Spatial pattern formation in the Keller-Segel Model with a logistic source

被引:8
作者
Fu, Shengmao [1 ]
Liu, Ji [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Keller-Segel model; Logistic source; Pattern formation; Nonlinear dynamics; CHEMOTAXIS MODEL; DYNAMICS; GROWTH;
D O I
10.1016/j.camwa.2013.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Neumann boundary value problem in a d-dimensional box T-d = (0, pi)(d) (d = 1, 2, 3) for the chemotaxis-diffusion-growth model {U-t = del(D-u del U - chi U del V) + rU(1 - U K), V-t = D-nu del V-7 + alpha U - beta V, (star) which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that given any general perturbation of magnitude delta, its nonlinear evolution is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the order In 1/delta. Each initial perturbation certainly can behave drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical characterization for the early-stage pattern formation in the Keller-Segel model (star). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 11 条
  • [1] [Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
  • [2] [Anonymous], 1993, LECT NOTES MATH
  • [3] Spatiotemporal evolution in a (2+1)-dimensional chemotaxis model
    Banerjee, Santo
    Misra, Amar P.
    Rondoni, L.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (1-2) : 107 - 112
  • [4] Dynamics near an unstable Kirchhoff ellipse
    Guo, Y
    Hallstrom, C
    Spirn, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (02) : 297 - 354
  • [5] Pattern formation (I): The Keller-Segel model
    Guo, Yan
    Hwang, Hyung Ju
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) : 1519 - 1530
  • [6] Kurata N., 2008, Math. Sci. Appl, V29, P265
  • [7] Spatial pattern formation in a chemotaxis-diffusion-growth model
    Kuto, Kousuke
    Osaki, Koichi
    Sakurai, Tatsunari
    Tsujikawa, Tohru
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (19) : 1629 - 1639
  • [8] Aggregating pattern dynamics in a chemotaxis model including growth
    Mimura, M
    Tsujikawa, T
    [J]. PHYSICA A, 1996, 230 (3-4): : 499 - 543
  • [9] Spatio-temporal chaos in a chemotaxis model
    Painter, Kevin J.
    Hillen, Thomas
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (4-5) : 363 - 375
  • [10] Strategy and stationary pattern in a three-species predator-prey model
    Pang, PYH
    Wang, MX
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) : 245 - 273