Spatial pattern formation in the Keller-Segel Model with a logistic source

被引:8
作者
Fu, Shengmao [1 ]
Liu, Ji [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Keller-Segel model; Logistic source; Pattern formation; Nonlinear dynamics; CHEMOTAXIS MODEL; DYNAMICS; GROWTH;
D O I
10.1016/j.camwa.2013.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Neumann boundary value problem in a d-dimensional box T-d = (0, pi)(d) (d = 1, 2, 3) for the chemotaxis-diffusion-growth model {U-t = del(D-u del U - chi U del V) + rU(1 - U K), V-t = D-nu del V-7 + alpha U - beta V, (star) which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that given any general perturbation of magnitude delta, its nonlinear evolution is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the order In 1/delta. Each initial perturbation certainly can behave drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical characterization for the early-stage pattern formation in the Keller-Segel model (star). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 11 条
[1]  
[Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
[2]  
[Anonymous], 1993, LECT NOTES MATH
[3]   Spatiotemporal evolution in a (2+1)-dimensional chemotaxis model [J].
Banerjee, Santo ;
Misra, Amar P. ;
Rondoni, L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (1-2) :107-112
[4]   Dynamics near an unstable Kirchhoff ellipse [J].
Guo, Y ;
Hallstrom, C ;
Spirn, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (02) :297-354
[5]   Pattern formation (I): The Keller-Segel model [J].
Guo, Yan ;
Hwang, Hyung Ju .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) :1519-1530
[6]  
Kurata N., 2008, Math. Sci. Appl, V29, P265
[7]   Spatial pattern formation in a chemotaxis-diffusion-growth model [J].
Kuto, Kousuke ;
Osaki, Koichi ;
Sakurai, Tatsunari ;
Tsujikawa, Tohru .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (19) :1629-1639
[8]   Aggregating pattern dynamics in a chemotaxis model including growth [J].
Mimura, M ;
Tsujikawa, T .
PHYSICA A, 1996, 230 (3-4) :499-543
[9]   Spatio-temporal chaos in a chemotaxis model [J].
Painter, Kevin J. ;
Hillen, Thomas .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (4-5) :363-375
[10]   Strategy and stationary pattern in a three-species predator-prey model [J].
Pang, PYH ;
Wang, MX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) :245-273