Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

被引:50
作者
Chaney, Nathaniel W. [1 ]
Herman, Jonathan D. [2 ]
Ek, Michael B. [3 ]
Wood, Eric F. [4 ]
机构
[1] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[2] UC, Dept Civil & Environm Engn, Davis, CA USA
[3] NOAA, EMC, NCEP, College Pk, MD USA
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
SENSITIVITY-ANALYSIS; ETA-MODEL; LAYER; PREDICTION; MOISTURE; SCHEMES; DROUGHT; WEATHER; DATASET; IMPACT;
D O I
10.1002/2016JD024821
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of modelparameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (r(s,min)), the Zilitinkevich empirical constant (C-zil), and the bare soil evaporation exponent (fx(exp)). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
引用
收藏
页码:13218 / 13235
页数:18
相关论文
共 53 条
[1]   Estimation of the Minimum Canopy Resistance for Croplands and Grasslands Using Data from the 2002 International H2O Project [J].
Alfieri, Joseph G. ;
Niyogi, Dev ;
Blanken, Peter D. ;
Chen, Fei ;
LeMone, Margaret A. ;
Mitchell, Kenneth E. ;
Ek, Michael B. ;
Kumar, Anil .
MONTHLY WEATHER REVIEW, 2008, 136 (11) :4452-4469
[2]   Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems [J].
Baldocchi, Dennis .
AUSTRALIAN JOURNAL OF BOTANY, 2008, 56 (01) :1-26
[3]  
Ball J., 1987, Progress in Photosynthesis Research, V4, P221, DOI [10.1007/978-94-017-0519, DOI 10.1007/978-94-017-0519, DOI 10.1007/978-94-017-0519-6_48, 10.1007/978-94-017-0519-6_48, DOI 10.1007/978-94-017-0519-648]
[4]  
Betts AK, 1997, MON WEATHER REV, V125, P2896, DOI 10.1175/1520-0493(1997)125<2896:AOTLSA>2.0.CO
[5]  
2
[6]   Land-Surface-Atmosphere Coupling in Observations and Models [J].
Betts, Alan K. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2009, 1
[7]   A manifesto for the equifinality thesis [J].
Beven, K .
JOURNAL OF HYDROLOGY, 2006, 320 (1-2) :18-36
[8]   Flood and drought hydrologic monitoring: the role of model parameter uncertainty [J].
Chaney, N. W. ;
Herman, J. D. ;
Reed, P. M. ;
Wood, E. F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (07) :3239-3251
[9]   Modeling of land surface evaporation by four schemes and comparison with FIFE observations [J].
Chen, F ;
Mitchell, K ;
Schaake, J ;
Xue, YK ;
Pan, HL ;
Koren, V ;
Duan, QY ;
Ek, M ;
Betts, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :7251-7268
[10]   Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model [J].
Chen, F ;
Janjic, Z ;
Mitchell, K .
BOUNDARY-LAYER METEOROLOGY, 1997, 85 (03) :391-421