共 50 条
Self-Assembled Diblock Copolymer "Nanoreactors" as "Catalysts" for Metal Nanoparticle Synthesis
被引:15
|作者:
Gazit, Oz
[1
]
Khalfin, Rafail
[1
]
Cohen, Yachin
[1
]
Tannenbaum, Rina
[1
,2
]
机构:
[1] Technion Israel Inst Technol, Dept Chem Engn, IL-32000 Haifa, Israel
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金:
以色列科学基金会;
美国国家科学基金会;
关键词:
BLOCK-COPOLYMERS;
ADSORPTION;
NUCLEATION;
MICELLES;
KINETICS;
THERMODYNAMICS;
SCATTERING;
MECHANISM;
POLYMERS;
BEHAVIOR;
D O I:
10.1021/jp807668h
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The self-assembly and selective distribution of metal or metal oxide nanoparticles in block copolymer matrices was designed to produce photonic bandgap materials through a bottom-up method rather than the more common top-down approach. The synthesis of such materials consists of the in situ thermolysis of metal carbonyl precursors in a diblock copolymer solution. Reaction rates of the formation of nanoparticles in solution were measured to better understand and control the course and final products of the reactions. Our results showed that the rates for reactions performed in a diblock copolymer solution are much faster than the rates of the same reactions performed in a homopolymer solution. The reaction rates for the thermolysis of three different metal carbonyl precursors, Cr(CO)(6), Fe(CO)(5), and CO2(CO)(8), show that this phenomenon is not specific to the type of metal carbonyl precursor, but rather, to the type of polymer in solution. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) were used as a model system both as homopolymers and as diblock copolymers. Our results showed that the arrangement of the diblock copolymers in solution into spherical internal-external (i.e., core-shell) domains created self-assembled "nanoreactors" with PS acting as the surrounding shell while the internal PMMA domain (core) contained high precursor concentration, resulting in faster kinetics. Furthermore, we have found that the arrangement of the diblock copolymer into these ordered structures in solution does not occur spontaneously, but is rather facilitated by a synergistic coupling effect with the metal carbonyl precursor.
引用
收藏
页码:576 / 583
页数:8
相关论文