Structure and Flexibility of Nanoscale Protein Cages Designed by Symmetric Self-Assembly

被引:78
|
作者
Lai, Yen-Ting [1 ]
Tsai, Kuang-Lei [2 ]
Sawaya, Michael R. [3 ]
Asturias, Francisco J. [2 ]
Yeates, Todd O. [3 ,4 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[2] Scripps Res Inst, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
[3] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
COMPUTATIONAL DESIGN; CRYSTAL;
D O I
10.1021/ja402277f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing protein molecules that self-assemble into complex architectures is an outstanding goal in the area of nanobiotechnology. One design strategy for doing this involves genetically fusing together two natural proteins, each of which is known to form a simple oligomer on its own (e.g., a dimer or trimer). If two such components can be fused in a geometrically predefined configuration, that designed subunit can, in principle, assemble into highly symmetric architectures. Initial experiments showed that a 12-subunit tetrahedral cage, 16 nm in diameter, could be constructed following such a procedure [Padilla, J. E.; et al. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 2217; Lai, Y. T.; et al. Science 2012, 336, 1129]. Here we characterize multiple crystal structures of protein cages constructed in this way, including cages assembled from two mutant forms of the same basic protein subunit. The flexibilities of the designed assemblies and their deviations from the target model are described, along with implications for further design developments.
引用
收藏
页码:7738 / 7743
页数:6
相关论文
共 50 条
  • [1] Structure and Self-assembly of Negatively Supercharged Protein Cages
    Sasaki, Eita
    Hilvert, Donald
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2019, 139 (02): : 199 - 208
  • [2] Self-assembly approaches to nanomaterial encapsulation in viral protein cages
    Aniagyei, Stella E.
    DuFort, Christopher
    Kao, C. Cheng
    Dragnea, Bogdan
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (32) : 3763 - 3774
  • [3] Designing symmetric protein cages and nanoscale materials
    Yeates, Todd
    Liu, Yuxi
    Laniado, Joshua
    Cannon, Kevin
    Miller, Justin
    Lai, Yen-Ting
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [4] Protein self-assembly creates a nanoscale device for biomineralization
    Snead, Malcolm L.
    Zhu, DanHong
    Lei, Yaping
    White, Shane N.
    Snead, Christian M.
    Luo, Wen
    Paine, Michael L.
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2006, 26 (08): : 1296 - 1300
  • [5] Self-assembly of nanoscale, porous T-symmetric molecular adamantanoids
    Cui, Y
    Ngo, HL
    Lin, WB
    INORGANIC CHEMISTRY, 2002, 41 (23) : 5940 - 5942
  • [6] Self-assembly of minimal COPII cages
    Antonny, B
    Gounon, P
    Schekman, R
    Orci, L
    EMBO REPORTS, 2003, 4 (04) : 419 - 424
  • [7] Templated self-assembly of porphyrin cages
    Elemans, JAAW
    Slagt, VF
    Rowan, AE
    Nolte, RJM
    ISRAEL JOURNAL OF CHEMISTRY, 2005, 45 (03) : 271 - 279
  • [8] Coded nanoscale self-assembly
    Prathyush Samineni
    Debabrata Goswami
    Pramana, 2008, 71 : 1345 - 1351
  • [9] Mechanisms of NanoScale Self-Assembly
    Kroto, Harold
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 3 - 3
  • [10] Coded nanoscale self-assembly
    Samineni, Prathyush
    Goswami, Debabrata
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (06): : 1345 - 1351