Haruspicy 2: The anisotropic generating function of self-avoiding polygons is not D-finite

被引:4
作者
Rechnitzer, A [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
enumeration; self-avoiding polygons; solvability; differentiably finite power series;
D O I
10.1016/j.jcta.2005.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the anisotropic generating function of self-avoiding polygons is not a D-finite function-proving a conjecture of Guttmann [Discrete Math. 217 (2000) 167-189] and Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. This result is also generalised to self-avoiding polygons on hypercubic lattices. Using the haruspicy techniques developed in an earlier paper [Rechnitzer, Adv. Appl. Math. 30 (2003) 228-257], we are also able to prove the form of the coefficients of the anisotropic generating function, which was first conjectured in Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:520 / 546
页数:27
相关论文
共 19 条
[1]   SPIRALLING SELF-AVOIDING WALKS - AN EXACT SOLUTION [J].
BLOTE, HWJ ;
HILHORST, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03) :L111-L115
[2]   The site-perimeter of bargraphs [J].
Bousquet-Mélou, M ;
Rechnitzer, A .
ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (01) :86-112
[3]   Lattice animals and heaps of dimers [J].
Bousquet-Mélou, M ;
Rechnitzer, A .
DISCRETE MATHEMATICS, 2002, 258 (1-3) :235-274
[4]  
Bousquet-Melou M, 1999, ANN COMB, V3, P223
[5]   A method for the enumeration of various classes of column-convex polygons [J].
BousquetMelou, M .
DISCRETE MATHEMATICS, 1996, 154 (1-3) :1-25
[6]   GENERATING-FUNCTIONS FOR ENUMERATING SELF-AVOIDING RINGS ON THE SQUARE LATTICE [J].
ENTING, IG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (12) :3713-3722
[7]   Solvability of some statistical mechanical systems [J].
Guttmann, AJ ;
Enting, IG .
PHYSICAL REVIEW LETTERS, 1996, 76 (03) :344-347
[8]   Indicators of solvability for lattice models [J].
Guttmann, AJ .
DISCRETE MATHEMATICS, 2000, 217 (1-3) :167-189
[9]  
Hughes B. D., 1995, RANDOM WALKS RANDOM, V1
[10]  
JENSEN I, COMMUNICATION