Manin obstruction to strong approximation for homogeneous spaces

被引:28
作者
Borovoi, Mikhail [1 ]
Demarche, Cyril [2 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Univ Paris 11, Lab Math Orsay, F-91405 Orsay, France
基金
以色列科学基金会;
关键词
Manin obstruction; strong approximation; Brauer group; homogeneous spaces; connected algebraic groups; BRAUER GROUP; ALGEBRAIC VARIETY; RESOLUTION; FIELD; SINGULARITIES; THEOREMS; POINTS;
D O I
10.4171/CMH/277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a homogeneous space X (not necessarily principal) of a connected algebraic group G (not necessarily linear) over a number field k, we prove a theorem of strong approximation for the adelic points of X in the Brauer-Manin set. Namely, for an adelic point x of X orthogonal to a certain subgroup (which may contain transcendental elements) of the Brauer group Br(X) of X with respect to the Manin pairing, we prove a strong approximation property for x away from a finite set S of places of k. Our result extends a result of Harari for torsors of semiabelian varieties and a result of Colliot-Thelene and Xu for homogeneous spaces of simply connected semisimple groups, and our proof uses those results.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 49 条
[1]  
[Anonymous], preprint
[2]  
[Anonymous], 1966, LECT NOTES MATH
[3]  
[Anonymous], 1968, Advanced Studies in Pure Mathematics, V3, P46
[4]  
[Anonymous], 2001, CAMBRIDGE TRACTS MAT
[5]  
Artin M., 1972, Theorie des topos et cohomologie etale des schemas (known as SGA4), DOI DOI 10.1007/BFB0081551
[6]  
Artin M., 1972, LECT NOTES MATH, V305
[7]  
Artin M., 1972, LECT NOTES MATH, V270
[8]   Sharp de Rham realization [J].
Barbieri-Viale, Luca ;
Bertapelle, Alessandra .
ADVANCES IN MATHEMATICS, 2009, 222 (04) :1308-1338
[9]   Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant [J].
Bierstone, E ;
Milman, PD .
INVENTIONES MATHEMATICAE, 1997, 128 (02) :207-302
[10]   The elementary obstruction and homogeneous spaces [J].
Borovoi, M. ;
Colliot-Thelene, J. -L. ;
Skorobogatov, A. N. .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) :321-364