A directional multivariate control chart for monitoring univariate autocorrelated processes

被引:0
|
作者
Yang, Wenwan [1 ]
Zi, Xuemin [1 ]
Zou, Changliang
机构
[1] Tianjin Univ Technol & Educ, Tianjin, Peoples R China
来源
ADVANCED MATERIALS AND PROCESS TECHNOLOGY, PTS 1-3 | 2012年 / 217-219卷
关键词
statistical process control; autocorrelated; spatial sign test; EWMA;
D O I
10.4028/www.scientific.net/AMM.217-219.2607
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new nonparametric multivariate control chart, based on a spatial-sign test and integrating the directional information from processes with the exponentially weighted moving average (EWMA) scheme, is developed for monitoring the mean of a univariate autocorrelated process. Simulation studies show that it has robustness in in-control (IC) performance, and it is more sensitive to the small and moderate mean shifts for non-normality underlying process than other existing multivariate chart methods.
引用
收藏
页码:2607 / 2613
页数:7
相关论文
共 50 条
  • [31] Monitoring autocorrelated multivariate simple linear profiles
    Soleimani, Paria
    Noorossana, Rassoul
    Niaki, S. T. A.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 67 (5-8) : 1857 - 1865
  • [32] Data mining model-based control charts for multivariate and autocorrelated processes
    Kim, Seoung Burn
    Jitpitaklert, Weerawat
    Park, Sun-Kyoung
    Hwang, Seung-June
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) : 2073 - 2081
  • [33] Monitoring autocorrelated multivariate simple linear profiles
    Paria Soleimani
    Rassoul Noorossana
    S. T. A. Niaki
    The International Journal of Advanced Manufacturing Technology, 2013, 67 : 1857 - 1865
  • [34] A multivariate control chart for simultaneously monitoring process mean and variability
    Zhang, Jiujun
    Li, Zhonghua
    Wang, Zhaojun
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (10) : 2244 - 2252
  • [35] Monitoring multistage processes with autocorrelated observations
    Kim, Jinho
    Jeong, Myong K.
    Elsayed, Elsayed A.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (08) : 2385 - 2396
  • [36] Monitoring autocorrelated processes using a distribution-free tabular CUSUM chart with automated variance estimation
    Lee, Joongsup
    Alexopoulos, Christos
    Goldsman, David
    Kim, Seong-Hee
    Tsui, Kwok-Leung
    Wilson, James R.
    IIE TRANSACTIONS, 2009, 41 (11) : 979 - 994
  • [37] Multivariate binomial/multinomial control chart
    Li, Jian
    Tsung, Fugee
    Zou, Changliang
    IIE TRANSACTIONS, 2014, 46 (05) : 526 - 542
  • [38] A wavelet-based nonparametric CUSUM control chart for autocorrelated processes with applications to network surveillance
    Li, Jun
    Jeske, Daniel R.
    Zhou, Yangmei
    Zhang, Xin
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (02) : 644 - 658
  • [39] Monitoring biological processes using univariate statistical process control
    Mansouri, Majdi
    Al-Khazraji, Ayman
    Yin Teh, Sin
    Harkat, Mohamed-Faouzi
    Nounou, Hazem
    Nounou, Mohamed
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 97 (04) : 859 - 868
  • [40] A modified CUSUM control chart for monitoring industrial processes
    Faisal, Muhammad
    Zafar, Raja Fawad
    Abbas, Nasir
    Riaz, Muhammad
    Mahmood, Tahir
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2018, 34 (06) : 1045 - 1058