Cryo-CMOS Circuits and Systems for Quantum Computing Applications

被引:309
|
作者
Patra, Bishnu [1 ,2 ,3 ]
Incandela, Rosario M. [1 ,2 ,3 ]
van Dijk, Jeroen P. G. [1 ,2 ,3 ]
Homulle, Harald A. R. [1 ,2 ,3 ]
Song, Lin [4 ]
Shahmohammadi, Mina [5 ]
Staszewski, Robert Bogdan [6 ]
Vladimirescu, Andrei [7 ,8 ]
Babaie, Masoud [1 ,9 ]
Sebastiano, Fabio [1 ,9 ]
Charbon, Edoardo [3 ,10 ,11 ]
机构
[1] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[2] Qutech, NL-2628 CJ Delft, Netherlands
[3] Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[4] Analog Devices Inc, Beijing 100192, Peoples R China
[5] Catena BV, NL-2628 XG Delft, Netherlands
[6] Univ Coll Dublin, UCD Engn & Mat Sci Ctr, Dublin 4, Ireland
[7] Univ Calif Berkeley, Berkeley, CA 94708 USA
[8] Inst Super Elect Paris, F-75006 Paris, France
[9] Delft Univ Technol, Dept Microelect, NL-2628 CD Delft, Netherlands
[10] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[11] Intel Corp, Hillsboro, OR 97124 USA
关键词
Class-F oscillator; CMOS characterization; cryo-CMOS; low-noise amplifier (LNA); noise canceling; phase noise (PN); quantum bit (qubit); quantum computing; qubit control; single-photon avalanche diode (SPAD); ELECTRON-SPIN; PHASE NOISE; TEMPERATURE; OSCILLATOR; ALGORITHMS; QUBIT;
D O I
10.1109/JSSC.2017.2737549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum computers. In this paper, a cryogenic control system is proposed, along with the required specifications, for the interface of the classical electronics with the quantum processor. To prove the advantages of such a system, the functionality of key circuit blocks is experimentally demonstrated. The characteristic properties of cryo-CMOS are exploited to design a noise-canceling low-noise amplifier for spin-qubit RF-reflectometry readout and a class-F-2,F-3 digitally controlled oscillator required to manipulate the state of qubits.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 50 条
  • [31] PCB design considerations and temperature sensing for Cryo-CMOS
    Arzate Palma, V. H.
    Wen, Minda
    Montanares, Mauricio
    Sandoval-Ibarra, F.
    Salgado, Gerardo Molina
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 1021 - 1025
  • [32] A Cryo-CMOS Controller With Class-DE Driver and DC Magnetic-Field Tuning for Quantum Computers Based on Color Centers in Diamond
    Fakkel, Niels
    Enthoven, Luc
    Yun, Jiwon
    van Riggelen, Margriet
    van Ommen, Hendrik Benjamin
    Schymik, Kai-Niklas
    Bartling, Hans P.
    Katranara, Eftychia Tsapanou
    Vollmer, Rene
    Taminiau, Tim H.
    Babaie, Masoud
    Sebastiano, Fabio
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (11) : 3627 - 3643
  • [33] A Benchmark of Cryo-CMOS Embedded SRAM/DRAMs in 40-nm CMOS
    Damsteegt, Rob A.
    Overwater, Ramon W. J.
    Babaie, Masoud
    Sebastiano, Fabio
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (07) : 2042 - 2054
  • [34] From Master equation to SPICE: a platform to model cryo-CMOS control for qubits
    Pesic, Vladimir
    Wright, Andrew
    Charbon, Edoardo
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [35] A Cryo-CMOS, Low-Power, Low-Noise, Phase-Locked Loop Design for Quantum Computers
    Xin, Kewei
    Lai, Mingche
    Lv, Fangxu
    Guo, Kaile
    Pang, Zhengbin
    Xu, Chaolong
    Zhang, Geng
    Wang, Wenchen
    Li, Meng
    ELECTRONICS, 2023, 12 (15)
  • [36] Quantum Computing: Circuits, Algorithms, and Applications
    Shafique, Muhammad Ali
    Munir, Arslan
    Latif, Imran
    IEEE ACCESS, 2024, 12 : 22296 - 22314
  • [37] Static Noise Margin Analysis for Cryo-CMOS SRAM Cell
    Hu, Vita Pi-Ho
    Liu, Chang-Ju
    2021 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2021,
  • [38] Evidence of Tunneling Driven Random Telegraph Noise in Cryo-CMOS
    Michl, J.
    Grill, A.
    Stampfer, B.
    Waldhoer, D.
    Schleich, C.
    Knobloch, T.
    Ioannidis, E.
    Enichlmair, H.
    Minixhofer, R.
    Kaczer, B.
    Parvais, B.
    Govoreanu, B.
    Radu, I
    Grasser, T.
    Waltl, M.
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [39] A Co-Simulation Methodology for the Design of Integrated Silicon Spin Qubits With Their Control/Readout Cryo-CMOS Electronics
    Gys, Benjamin
    Acharya, Rohith
    Van Winckel, Steven
    De Greve, Kristiaan
    Gielen, Georges
    Catthoor, Francky
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2022, 12 (03) : 685 - 693
  • [40] A Cryo-CMOS Low-Noise Amplifier for the Square Kilometre Array
    Sheldon, Alexander
    Belostotski, Leonid
    2018 18TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM 2018), 2018,