Cryo-CMOS Circuits and Systems for Quantum Computing Applications

被引:309
|
作者
Patra, Bishnu [1 ,2 ,3 ]
Incandela, Rosario M. [1 ,2 ,3 ]
van Dijk, Jeroen P. G. [1 ,2 ,3 ]
Homulle, Harald A. R. [1 ,2 ,3 ]
Song, Lin [4 ]
Shahmohammadi, Mina [5 ]
Staszewski, Robert Bogdan [6 ]
Vladimirescu, Andrei [7 ,8 ]
Babaie, Masoud [1 ,9 ]
Sebastiano, Fabio [1 ,9 ]
Charbon, Edoardo [3 ,10 ,11 ]
机构
[1] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[2] Qutech, NL-2628 CJ Delft, Netherlands
[3] Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[4] Analog Devices Inc, Beijing 100192, Peoples R China
[5] Catena BV, NL-2628 XG Delft, Netherlands
[6] Univ Coll Dublin, UCD Engn & Mat Sci Ctr, Dublin 4, Ireland
[7] Univ Calif Berkeley, Berkeley, CA 94708 USA
[8] Inst Super Elect Paris, F-75006 Paris, France
[9] Delft Univ Technol, Dept Microelect, NL-2628 CD Delft, Netherlands
[10] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[11] Intel Corp, Hillsboro, OR 97124 USA
关键词
Class-F oscillator; CMOS characterization; cryo-CMOS; low-noise amplifier (LNA); noise canceling; phase noise (PN); quantum bit (qubit); quantum computing; qubit control; single-photon avalanche diode (SPAD); ELECTRON-SPIN; PHASE NOISE; TEMPERATURE; OSCILLATOR; ALGORITHMS; QUBIT;
D O I
10.1109/JSSC.2017.2737549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum computers. In this paper, a cryogenic control system is proposed, along with the required specifications, for the interface of the classical electronics with the quantum processor. To prove the advantages of such a system, the functionality of key circuit blocks is experimentally demonstrated. The characteristic properties of cryo-CMOS are exploited to design a noise-canceling low-noise amplifier for spin-qubit RF-reflectometry readout and a class-F-2,F-3 digitally controlled oscillator required to manipulate the state of qubits.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 50 条
  • [21] A 200-MS/s 12-b Cryo-CMOS CS DAC for Quantum Computing
    Zhou, Changchun
    He, Xuexi
    Zeng, Bolun
    Xu, Jun
    Luo, Chao
    Guo, Guoping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2025, 72 (01) : 98 - 102
  • [22] A Cryo-CMOS DAC-Based 40-Gb/s PAM4 Wireline Transmitter for Quantum Computing
    Fakkel, Niels
    Mortazavi, Mohsen
    Overwater, Ramon W. J.
    Sebastiano, Fabio
    Babaie, Masoud
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (05) : 1433 - 1446
  • [23] Hot Carrier Degradation in Cryo-CMOS
    Chakraborty, W.
    Sharma, U.
    Datta, S.
    Mahapatra, S.
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [24] Interfacing Qubits via Cryo-CMOS Front Ends
    Ruffino, Andrea
    Peng, Yatao
    Charbon, Edoardo
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUITS, TECHNOLOGIES AND APPLICATIONS (ICTA 2018), 2018, : 42 - 44
  • [25] A Fully Integrated Cryo-CMOS SoC for State Manipulation, Readout, and High-Speed Gate Pulsing of Spin Qubits
    Park, Jongseok
    Subramanian, Sushil
    Lampert, Lester
    Mladenov, Todor
    Klotchkov, Ilya
    Kurian, Dileep J.
    Juarez-Hernandez, Esdras
    Esparza, Brando Perez
    Kale, Sirisha Rani
    Beevi, Asma K. T.
    Premaratne, Shavindra P.
    Watson, Thomas P.
    Suzuki, Satoshi
    Rahman, Mustafijur
    Timbadiya, Jaykant B.
    Soni, Saksham
    Pellerano, Stefano
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (11) : 3289 - 3306
  • [26] A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons
    Van Dijk, Jeroen Petrus Gerardus
    Patra, Bishnu
    Subramanian, Sushil
    Xue, Xiao
    Samkharadze, Nodar
    Corna, Andrea
    Jeon, Charles
    Sheikh, Farhana
    Juarez-Hernandez, Esdras
    Esparza, Brando Perez
    Rampurawala, Huzaifa
    Carlton, Brent R.
    Ravikumar, Surej
    Nieva, Carlos
    Kim, Sungwon
    Lee, Hyung-Jin
    Sammak, Amir
    Scappucci, Giordano
    Veldhorst, Menno
    Vandersypen, Lieven M. K.
    Charbon, Edoardo
    Pellerano, Stefano
    Babaie, Masoud
    Sebastiano, Fabio
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (11) : 2930 - 2946
  • [27] Artificial Neural Network Modelling for Cryo-CMOS Devices
    't Hart, Pascal A.
    van Staveren, Job
    Sebastiano, Fabio
    Xu, Jianjun
    Root, David E.
    Babaie, Masoud
    2021 IEEE 14TH WORKSHOP ON LOW TEMPERATURE ELECTRONICS (WOLTE), 2021,
  • [28] Cryo-CMOS Multi-Frequency Modulator for 2-Qubit Controller
    Badiali, Alessandro
    Borgarino, Mattia
    ELECTRONICS, 2024, 13 (13)
  • [29] A Cryo-CMOS Transmon Qubit Controller and Verification with FPGA Emulation
    Tien, Kevin
    Inoue, Ken
    Lekuch, Scott
    Frank, David J.
    Chakraborty, Sudipto
    Rosno, Pat
    Fox, Thomas
    Yeck, Mark
    Glick, Joseph A.
    Robertazzi, Raphael
    Richetta, Ray
    Bulzacchelli, John F.
    Ramirez, Daniel
    Yilma, Dereje
    Davies, Andrew
    Joshi, Rajiv, V
    Underwood, Devin
    Wisnieff, Dorothy
    Baks, Chris
    Bethune, Donald
    Timmerwilke, John
    Johnson, Blake R.
    Gaucher, Brian P.
    Friedman, Daniel J.
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 13 - 16
  • [30] A 40 nm Cryo-CMOS Homodyne-Demodulation Readout SoC for Superconducting Qubits
    Minn, Donggyu
    Kang, Kiseo
    Lee, Jaeho
    Bae, Seongchan
    Kim, Byungjun
    Lee, Jaehoon
    Sim, Jae-Yoon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024,