Comparison of Univariate and Multivariate Gene Set Analysis in Acute Lymphoblastic Leukemia

被引:7
|
作者
Soheila, Khodakarim [1 ]
Hamid, AlaviMajd [2 ]
Farid, Zayeri [2 ]
Mostafa, Rezaei-Tavirani [5 ]
Nasrin, Dehghan-Nayeri [3 ]
Syyed-Mohammad, Tabatabaee [4 ]
Vahide, Tajalli [6 ]
机构
[1] Shahid Beheshti Univ Med Sci, Fac Publ Hlth, Dept Epidemiol, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Biostat, Tehran, Iran
[3] Shahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Prote, Tehran, Iran
[4] Shahid Beheshti Univ Med Sci, Fac Paramed Sci, Dept Med Informat, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Prote Res Ctr, Tehran, Iran
[6] Univ Tehran, Fac Literature & Human Sci, Dept Linguist, Tehran, Iran
关键词
Acute lymphoblastic leukemia; microarray; gene set analysis; category; Hotelling's T-2; EXPRESSION DATA; PATHWAYS; PURINE; TERMS;
D O I
10.7314/APJCP.2013.14.3.1629
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Gene set analysis (GSA) incorporates biological with statistical knowledge to identify gene sets which are differentially expressed that between two or more phenotypes. Materials and Methods: In this paper gene sets differentially expressed between acute lymphoblastic leukaemia (ALL) with BCR-ABL and those with no observed cytogenetic abnormalities were determined by GSA methods. The BCR-ABL is an abnormal gene found in some people with ALL. Results: gene sets differentially expressed between two phenotypes, while the Hotelling's T-2 could discover just 19 gene In addition, the performance of these methods was compared by simulated and ALL data. Conclusions: The results on simulated data indicated decrease in the type I error rate and increase the power in multivariate (Hotelling's T-2) test as increasing the correlation between gene pairs in contrast to the univariate (Category) test.
引用
收藏
页码:1629 / 1633
页数:5
相关论文
共 50 条
  • [1] SET oncogene is upregulated in pediatric acute lymphoblastic leukemia
    Ekmekci, Sema Sirma
    Ekmekci, Cumhur G.
    Kandilci, Ayten
    Gulec, Cagri
    Akbiyik, Meral
    Emrence, Zeliha
    Abaci, Neslihan
    Karakas, Zeynep
    Agaoglu, Leyla
    Unuvar, Aysegul
    Anak, Sema
    Devecioglu, Omer
    Ustek, Duran
    Grosveld, Gerard
    Ozbek, Ugur
    TUMORI JOURNAL, 2012, 98 (02): : 252 - 256
  • [2] Gene expression profiles and treatment response in acute lymphoblastic leukemia
    Pieters, R.
    Holleman, A.
    Den Boer, M. L.
    ANNALS OF HEMATOLOGY, 2006, 85 : 125 - 126
  • [3] Digital gene expression profiling analysis of childhood acute lymphoblastic leukemia
    Zhao, Ming-Yi
    Yu, Yan
    Xie, Min
    Yang, Ming-Hua
    Zhu, Shan
    Yang, Liang-Chun
    Kang, Rui
    Tang, Dao-Lin
    Zhao, Ling-Ling
    Cao, Li-Zhi
    MOLECULAR MEDICINE REPORTS, 2016, 13 (05) : 4321 - 4328
  • [4] Bioinformatics analysis of gene expression profiles in childhood B-precursor acute lymphoblastic leukemia
    Li, Jun
    Zhai, Xiaowen
    Wang, Hongsheng
    Qian, Xiaowen
    Miao, Hui
    Zhu, Xiaohua
    HEMATOLOGY, 2015, 20 (07) : 377 - 383
  • [5] Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
    Sheikhpour, Razieh
    Fazli, Roohallah
    Mehrabani, Sanaz
    IRANIAN JOURNAL OF PEDIATRIC HEMATOLOGY AND ONCOLOGY, 2021, 11 (02) : 70 - 77
  • [6] Myeloperoxidase mRNA analysis in acute lymphoblastic leukemia
    Crisan, D
    Topalovski, M
    OMalley, B
    DIAGNOSTIC MOLECULAR PATHOLOGY, 1996, 5 (04) : 236 - 248
  • [7] Multivariate analysis of variance test for gene set analysis
    Tsai, Chen-An
    Chen, James J.
    BIOINFORMATICS, 2009, 25 (07) : 897 - 903
  • [8] Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification
    Jothi, G.
    Inbarani, H. Hannah
    Azar, Ahmad Taher
    Devi, K. Renuga
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (09) : 5175 - 5194
  • [9] Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification
    G. Jothi
    H. Hannah Inbarani
    Ahmad Taher Azar
    K. Renuga Devi
    Neural Computing and Applications, 2019, 31 : 5175 - 5194
  • [10] Microsatellite analysis in childhood acute lymphoblastic leukemia
    Reato, G
    Basso, G
    Putti, MC
    Cignetti, A
    Guarini, A
    Foa, R
    HAEMATOLOGICA, 1998, 83 (05) : 403 - 407