Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress

被引:98
|
作者
Liu, Hang [1 ,2 ]
Zhang, Yun-Hong [1 ]
Yin, Heng [1 ]
Wang, Wen-Xia [1 ]
Zhao, Xiao-Ming [1 ]
Du, Yu-Guang [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Liaoning Prov Key Lab Carbohydrates, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Alginate oligosaccharides; Wheat (Triticum aestivum L.); Drought resistance; Stress-responsive gene; SALT-STRESS; ROOT-GROWTH; GENE-EXPRESSION; PROTEIN-KINASE; WATER-DEFICIT; WHEAT; PLANTS; RESPONSES; PROLINE; P5CS;
D O I
10.1016/j.plaphy.2012.10.012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Alginate oligosaccharides (AOS) prepared from degradation of alginate is a potent plant elicitor. Hydroponic experiments were carried out to investigate the mechanism of AOS on improving Triticum aestivum L resistant ability to drought stress. Drought model was simulated by exposing the roots of wheat to polyethylene glycol-6000 (PEG-6000) solution (150 g L-1) for 4 days and the growth of wheat treated with PEG was significantly decreased. However, after AOS application, seedling and root length, fresh weight and relative water content of wheat were increased by 18%, 26%, 43% and 33% under dehydration status compared with that of PEG group, respectively. Moreover, the antioxidative enzymes activities were obviously enhanced and malondialdehyde (MDA) content was reduced by 37.9% in samples treated by AOS. Additionally, the drought resistant related genes involved in ABA signal pathway, such as late embryogenesis abundant protein 1 gene (LEA1), psbA gene, Sucrose non-fermenting 1-related protein kinase 2 gene (SnRK2) and Pyrroline-5-Carboxylate Synthetase gene (P5CS) were up-regulated by AOS. Our results suggested that AOS might regulate ABA-dependent signal pathway to enhance drought stress resistance of wheat during growth period. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [1] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Ankita Pandey
    Mamrutha Harohalli Masthigowda
    Rakesh Kumar
    Shalini Mishra
    Rinki Khobra
    Girish Chandra Pandey
    Gyanendra Singh
    Gyanendra Pratap Singh
    Plant Physiology Reports, 2023, 28 : 63 - 77
  • [2] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Pandey, Ankita
    Masthigowda, Mamrutha Harohalli
    Kumar, Rakesh
    Mishra, Shalini
    Khobra, Rinki
    Pandey, Girish Chandra
    Singh, Gyanendra
    Singh, Gyanendra Pratap
    PLANT PHYSIOLOGY REPORTS, 2023, 28 (01) : 63 - 77
  • [3] Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.)
    Li, Lin
    Zheng, Minghui
    Deng, Guangbing
    Liang, Junjun
    Zhang, Haili
    Pan, Zhifen
    Long, Hai
    Yu, Maoqun
    MOLECULAR BREEDING, 2016, 36 (03) : 1 - 10
  • [4] Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.)
    Lin Li
    Minghui Zheng
    Guangbing Deng
    Junjun Liang
    Haili Zhang
    Zhifen Pan
    Hai Long
    Maoqun Yu
    Molecular Breeding, 2016, 36
  • [5] Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.
    Zhang, Yunhong
    Yang, Yonghui
    Mao, Jiawei
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (02) : 185 - 212
  • [6] GABA Application Enhances Drought Stress Tolerance in Wheat Seedlings (Triticum aestivum L.)
    Zhao, Qiuyan
    Ma, Yan
    Huang, Xianqing
    Song, Lianjun
    Li, Ning
    Qiao, Mingwu
    Li, Tiange
    Hai, Dan
    Cheng, Yongxia
    PLANTS-BASEL, 2023, 12 (13):
  • [7] WHEAT (TRITICUM AESTIVUM L.) DROUGHT TOLERANCE INDICES UNDER WATER STRESS CONDITIONS
    Lal, K.
    Jatoi, W. A.
    Memon, S.
    Jatoi, I. A.
    Rind, S. N.
    Rajput, L.
    Khan, N. M.
    Khaskhali, I. A.
    Depar, M. S.
    Lund, M. I.
    Kaleri, M. H.
    Sarwar, M. K. S.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (01): : 232 - 245
  • [8] Characterization of winter wheat (Triticum aestivum L.) germplasm for drought tolerance
    Kanbar, Osama Zuhair
    Chege, Paul
    Lantos, Csaba
    Kiss, Erzsebet
    Pauk, Janos
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2020, 18 (05): : 369 - 381
  • [9] Evaluation of wheat (Triticum aestivum L.) lines for drought tolerance in Kyrgyzstan
    Karabekovna, Isaeva Venera
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2023, 35 (05): : 436 - 441
  • [10] Drought stimulus enhanced stress tolerance in winter wheat ( Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity
    Ru, Chen
    Hu, Xiaotao
    Chen, Dianyu
    Wang, Wene
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 214