Uniform Boundedness and Decay Estimates for a System of Reaction-Diffusion Equations with a Triangular Diffusion Matrix on

被引:0
作者
Badraoui, Salah [1 ]
Mehamedia, Zahra [2 ]
机构
[1] Univ 08 Mai 1945 Guelma, Lab LAIG, Guelma 24000, Algeria
[2] Univ 08 Mai 1945 Guelma, Dept Math, Fac Math Info SM, Guelma 24000, Algeria
关键词
Reaction-diffusion equations; positivity of solutions; global existence; uniform boundedness; comparison principle; contraction mapping principle; contraction semigroup;
D O I
10.1007/s00009-012-0239-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns with a class of reaction-diffusion systems with triangular diffusion matrix on the unbounded domain . The system with diagonal diffusion matrix has been studied by J. D. Avrin and F. Rothe in [4]. We prove two new results about uniform boundedness to solutions of such class of reaction-diffusion systems in , the space of bounded uniformly continuous functions from to .
引用
收藏
页码:241 / 254
页数:14
相关论文
共 11 条
[1]  
Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
Avrin J. D., 1993, Applicable Analysis, V50, P131, DOI 10.1080/00036819308840189
[3]   BOUNDEDNESS AND DECAY-ESTIMATES FOR A CLASS OF REACTION-DIFFUSION SYSTEMS ON R(N) [J].
AVRIN, JD ;
ROTHE, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (01) :37-48
[4]   QUALITATIVE THEORY FOR A MODEL OF LAMINAR FLAMES WITH ARBITRARY NONNEGATIVE INITIAL DATA [J].
AVRIN, JD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :290-308
[5]  
Badraoui S., 2002, ELECT J DIFFERENTIAL
[6]  
Badraoui S., 2002, ARAB J MATH SC, V8, P27
[7]  
Buckmaster J.D., 1982, Theory of Laminar Flames
[8]  
Collet P., 1996, Ann. Sci. Norm. Super. Pisa Cl. Sci. (4), V23, P625
[9]   GLOBAL BOUNDS AND ASYMPTOTICS FOR A SYSTEM OF REACTION DIFFUSION-EQUATIONS [J].
KIRANE, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 138 (02) :328-342
[10]  
Pazy A., 2012, Semigroups of Linear Operators and Applications to Partial Differential Equations, DOI DOI 10.1007/978-1-4612-5561-1