Ti-Cu-Ni shape memory bulk metallic glass composites

被引:79
作者
Gargarella, P. [1 ]
Pauly, S. [1 ]
Song, K. K. [1 ]
Hu, J. [2 ]
Barekar, N. S. [3 ]
Khoshkhoo, M. Samadi [1 ]
Teresiak, A. [1 ]
Wendrock, H. [1 ]
Kuehn, U. [1 ]
Ruffing, C. [4 ]
Kerscher, E. [4 ]
Eckert, J. [1 ,5 ]
机构
[1] IFW Dresden, Inst Komplexe Mat, Dresden, Germany
[2] Beijing Technol & Business Univ, Sch Mat & Mech Engn, Beijing, Peoples R China
[3] Brunel Univ, BCAST, EPSRC Ctr Innovat Mfg Liquid Met Engn, Uxbridge UB8 3PH, Middx, England
[4] Tech Univ Kaiserslautern, Fachbereich Maschinenbau & Verfahrenstech, Kaiserslautern, Germany
[5] Tech Univ Dresden, Inst Werkstoffwissensch, D-01062 Dresden, Germany
关键词
Bulk metallic glass (BMG); Rapid solidification; Titanium alloys; Shape memory alloys (SMA); MARTENSITIC-TRANSFORMATION; MECHANICAL-PROPERTIES; ALLOYS; MICROSTRUCTURE; PARAMETERS; STABILITY; TITANIUM; BEHAVIOR;
D O I
10.1016/j.actamat.2012.09.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New Ti-Cu-Ni shape memory bulk metallic glass composites were obtained by carefully controlling the cooling rate upon quenching. This allows for the formation of a metastable microstructure consisting mainly of ductile, spherical martensitic Ti(Ni,Cu) precipitates embedded in an amorphous matrix also containing a small volume fraction of TiCu and Ti2Cu precipitates. These composites exhibit large ductility and high strength combined with a strong work-hardening behaviour. A deformation mechanism is proposed with the help of experimental observations and finite-element simulation. The simulation results demonstrate that stress concentrations occur around the precipitates, which promotes a heterogeneous stress distribution and the formation of multiple shear bands. Additionally, different transformation temperatures were observed for martensitic precipitates depending on whether they are completely or partially embedded in the amorphous matrix. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 47 条
[1]   Ductility of bulk metallic glass composites: Microstructural effects [J].
Abdeljawad, F. ;
Fontus, M. ;
Haataja, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (03)
[2]   Continuum Modeling of Bulk Metallic Glasses and Composites [J].
Abdeljawad, Fadi ;
Haataja, Mikko .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[3]  
[Anonymous], 1998, FUNDAMENTALS SOLIDIF
[4]   Structure-property relations in bulk metallic Cu-Zr-Al alloys [J].
Barekar, N. S. ;
Pauly, S. ;
Kumar, R. B. ;
Kuehn, U. ;
Dhindaw, B. K. ;
Eckert, J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (21-22) :5867-5872
[5]  
Cacciamani G, SPRINGER MAT LANDOLT
[6]   A YIELD CRITERION FOR PD40NI40P20 METALLIC-GLASS [J].
DONOVAN, PE .
ACTA METALLURGICA, 1989, 37 (02) :445-456
[7]   Mechanical properties of bulk metallic glasses and composites [J].
Eckert, J. ;
Das, J. ;
Pauly, S. ;
Duhamel, C. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (02) :285-301
[8]   On the shear-band direction in metallic glasses [J].
Gao, Y. F. ;
Wang, L. ;
Bei, H. ;
Nieh, T. G. .
ACTA MATERIALIA, 2011, 59 (10) :4159-4167
[9]   Compressive plasticity and toughness of a Ti-based bulk metallic glass [J].
Gu, X. J. ;
Poon, S. J. ;
Shiflet, G. J. ;
Lewandowski, J. J. .
ACTA MATERIALIA, 2010, 58 (05) :1708-1720
[10]   Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions [J].
Hays, CC ;
Kim, CP ;
Johnson, WL .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2901-2904