Magnetostatic dipolar domain-wall pinning in chains of permalloy triangular rings

被引:19
作者
Vavassori, P. [1 ,2 ,3 ,4 ]
Bisero, D. [2 ,3 ,4 ]
Bonanni, V. [2 ,3 ]
Busato, A. [2 ,3 ]
Grimsditch, M. [5 ]
Lebecki, K. M. [6 ]
Metlushko, V. [7 ]
Ilic, B. [8 ]
机构
[1] CIC nanoGUNE Consolider, E-20009 San Sebastian, Spain
[2] Univ Ferrara, CNISM, I-44100 Ferrara, Italy
[3] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy
[4] CNR, INFM, Natl Res Ctr, I-41100 Modena, Italy
[5] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[6] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[7] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[8] Cornell Univ, Sch Appl & Engn Phys, Cornell Nanofabricat Facil, Ithaca, NY 14853 USA
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 17期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.78.174403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In a combined experimental and numerical study, we investigated the details of the motion and pinning of domain walls in isolated and interacting permalloy triangular rings (side 2 mu m, width 250 nm, and thickness 25 nm). To induce interaction between the rings, they were arranged either in vertical chains with an apex of each triangle in proximity to the edge center of the triangle above it or in horizontal chains where the proximity is between the adjacent corners of the triangles. Using longitudinal and diffraction magneto-optic Kerr effects, magnetic force microscopy, and micromagnetic simulations, we determined the field dependence of the spin structure in the rings. In all cases the remnant state of each ring is an "onion" state characterized by two domain walls-one head to head the other tail to tail-pinned at the apexes. In isolated rings the magnetization reversal occurs between two onion states via the formation of an intermediate vortex state, which arises from the motion and annihilation of the two domain walls. In the case of the horizontal chains the reversal mechanism is unchanged except that the dipolar interaction affects the field range in which the rings are in the vortex state. In the case of vertical chains an additional intermediate state is observed during reversal. The new state involves a domain wall pinned at the center of the edge that is in close proximity to the apex of its neighbor. We show that the domain-wall motion in this last case can be modeled by a triple potential well. Because the new state requires that a domain wall be pinned at the neighboring apex, our observations can be viewed as a very elementary form of magnetic logic.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] Magnetic domain-wall logic
    Allwood, DA
    Xiong, G
    Faulkner, CC
    Atkinson, D
    Petit, D
    Cowburn, RP
    [J]. SCIENCE, 2005, 309 (5741) : 1688 - 1692
  • [2] Donahue M. J., 1999, 6376 NISTIR
  • [3] The diffracted magneto-optic Kerr effect: what does it tell you?
    Grimsditch, M
    Vavassori, P
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (09) : R275 - R294
  • [4] Majority logic gate for magnetic quantum-dot cellular automata
    Imre, A
    Csaba, G
    Ji, L
    Orlov, A
    Bernstein, GH
    Porod, W
    [J]. SCIENCE, 2006, 311 (5758) : 205 - 208
  • [5] Kläui M, 2005, APPL PHYS LETT, V86, DOI [10.1063/1.1856954, 10.1063/1.1846954]
  • [6] Domain wall pinning in narrow ferromagnetic ring structures probed by magnetoresistance measurements -: art. no. 097202
    Kläui, M
    Vaz, CAF
    Rothman, J
    Bland, JAC
    Wernsdorfer, W
    Faini, G
    Cambril, E
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (09) : 4 - 097202
  • [7] Controlled magnetic switching in single narrow rings probed by magnetoresistance measurements
    Kläui, M
    Vaz, CAF
    Bland, JAC
    Wernsdorfer, W
    Faini, G
    Cambril, E
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (01) : 108 - 110
  • [8] Vortex circulation control in mesoscopic ring magnets
    Kläui, M
    Rothman, J
    Lopez-Diaz, L
    Vaz, CAF
    Bland, JAC
    Cui, Z
    [J]. APPLIED PHYSICS LETTERS, 2001, 78 (21) : 3268 - 3270
  • [9] Suppression of stray field between adjacent rings in one-dimensional ferromagnetic ring arrays
    Kohda, M.
    Toyoda, K.
    Miyawaki, T.
    Fujita, A.
    Nitta, J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
  • [10] Quantitative determination of domain wall coupling energetics
    Laufenberg, M.
    Bedau, D.
    Ehrke, H.
    Klaeui, M.
    Ruediger, U.
    Backes, D.
    Heyderman, L. J.
    Nolting, F.
    Vaz, C. A. F.
    Bland, J. A. C.
    Kasama, T.
    Dunin-Borkowski, R. E.
    Cherifi, S.
    Locatelli, A.
    Heun, S.
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (21)