The main objective of this work was to combine the positive characteristics of transparent photopolymers and light-sensitive chalcogenide glasses, with aim to improve the amplitude-phase modulation characteristics of in situ optically recorded photonic elements on the surface, and in the bulk of thick composite layer on a given substrate. The positive results were obtained due to the developed technology routes of nanocomposite (NC) fabrication by intermixing selected, optically tunable, VIS-NIR transparent and high refractive index As-S (Se) nanoparticles (NPs) produced by chemical dissolution, and acrylate monomers with initiators. Subsequent photopolymerization of such nanocomposite occurs during optical recording photonic elements and is supplemented by mass-transport processes, which enhance relief parameters. Structure, optical parameters of the new light-sensitive media and conditions of one step recording of optical elements in it were investigated.