TWO-DIMENSIONAL DISJOINT MINIMAL GRAPHS

被引:0
|
作者
Zhou, Linfeng [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
minimal graphs; Meeks conjecture;
D O I
10.2140/pjm.2012.257.503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the assumption of Gauss curvature vanishing at infinity, we prove Meeks' conjecture: the number of disjointly supported minimal graphs in R-3 is at most two.
引用
收藏
页码:503 / 510
页数:8
相关论文
共 50 条
  • [1] TWO-DIMENSIONAL MINIMAL GRAPHS OVER UNBOUNDED DOMAINS
    Spruck, Joel
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2002, 1 (04) : 632 - U138
  • [2] Disjoint minimal graphs
    Tkachev, Vladimir G.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (02) : 139 - 155
  • [3] Disjoint minimal graphs
    Vladimir G. Tkachev
    Annals of Global Analysis and Geometry, 2009, 35 : 139 - 155
  • [4] Finiteness of disjoint minimal graphs
    Li, P
    Wang, JP
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (5-6) : 771 - 777
  • [5] Analysis of disjoint two-dimensional particle assemblies
    Tran, TX
    Nelson, RB
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1996, 122 (12): : 1139 - 1148
  • [6] Two-dimensional bandwidth of graphs
    Hao, JX
    ARS COMBINATORIA, 2005, 74 : 77 - 88
  • [7] The disjoint path covers of two-dimensional Torus networks
    Liu, Di
    Li, Jing
    Zuo, Shurong
    2018 15TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS AND NETWORKS (I-SPAN 2018), 2018, : 233 - 239
  • [8] FINITENESS OF HIGHER CODIMENSIONAL DISJOINT MINIMAL GRAPHS
    东瑜昕
    嵇庆春
    张玮
    Acta Mathematica Scientia, 2010, 30 (01) : 107 - 112
  • [9] FINITENESS OF HIGHER CODIMENSIONAL DISJOINT MINIMAL GRAPHS
    Dong Yuxin
    Ji Qingchun
    Zhang Wei
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) : 107 - 112
  • [10] THE GROWTH OF A TWO-DIMENSIONAL MINIMAL SURFACE
    VAN, L
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (03) : 235 - 236