Complex scaling and geometric analysis of several variables

被引:13
作者
Kim, Kang-Tae [1 ]
Krantz, Steven G. [2 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
[2] Amer Inst Math, Palo Alto, CA 94306 USA
基金
美国国家科学基金会;
关键词
automorphism group; scaling; pseudoconvexity; finite type; isotropy group; orbit; domain;
D O I
10.4134/BKMS.2008.45.3.523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.
引用
收藏
页码:523 / 561
页数:39
相关论文
共 101 条
[1]  
AKAHORI T, 1987, MEM AM MATH SOC, V67, P1
[3]   BOUNDED DOMAINS WITH PRESCRIBED GROUP OF AUTOMORPHISMS [J].
BEDFORD, E ;
DADOK, J .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) :561-572
[4]  
Bedford E, 1998, INDIANA U MATH J, V47, P199
[5]  
Bedford E., 1991, J. Geom. Anal, V1, P165, DOI 10.1007/BF02921302
[6]   A SIMPLIFICATION AND EXTENSION OF FEFFERMANS THEOREM ON BIHOLOMORPHIC-MAPPINGS [J].
BELL, S ;
LIGOCKA, E .
INVENTIONES MATHEMATICAE, 1980, 57 (03) :283-289
[7]   BIHOLOMORPHIC-MAPPINGS AND THE DELTABAR-PROBLEM [J].
BELL, SR .
ANNALS OF MATHEMATICS, 1981, 114 (01) :103-113
[8]  
Berteloot F., 1994, Internat. J. Math., V5, P619
[9]  
Bloom Thomas, 1977, J DIFFER GEOM, V12, P171
[10]  
Boas HP, 1995, MICH MATH J, V42, P449