Glasslike versus Crystalline Thermophysical Properties of the Cu-S based Minerals: Tetrahedrite and Colusite

被引:22
作者
Suekuni, Koichiro [1 ]
Tanaka, Hiromi I. [1 ]
Kim, Fiseong S. [1 ]
Umeo, Kazunori [2 ]
Takabatake, Toshiro [1 ,3 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci Matter, Dept Quantum Matter, Higashihiroshima, Hiroshima 7398530, Japan
[2] Hiroshima Univ, Nat Sci Ctr Basic Res & Dev, Higashihiroshima, Hiroshima 7398526, Japan
[3] Hiroshima Univ, Inst Adv Mat Res, Higashihiroshima, Hiroshima 7398530, Japan
关键词
RIETVELD REFINEMENT; CU12SB4S13; TENNANTITE; NICKEL; IRON; CO;
D O I
10.7566/JPSJ.84.103601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the thermal conductivity and specific heat measurements at temperatures down to 0.3 and 0.4 K, respectively, for synthetic Cu-S based minerals, namely, tetrahedrite Cu10Zn2Sb4S13 with rattling Cu atoms and colusite Cu23Zn3V2Sn6S32 without the rattling mode. Because both are semiconducting and diamagnetic, thermal conductivity and specific heat are predominated by the lattice contribution. For the tetrahedrite, thermal conductivity exhibits a plateau at approximately 4K and T-1.6 dependence at T < 0.7 K. The specific heat C divided by T-3 displays a broad peak at around 4K, almost identical to the so-called boson peak generally observed in structural glasses. This peak indicates the presence of an optical mode with the characteristic temperature. of 20 K, involving the out-of-plane motion of the threefold-coordinated Cu atom. For the colusite, in contrast, thermal conductivity shows a significant peak at 15K and specific heat reveals an optical mode with a higher. of 90 K. The contrasting behaviors of the two Cu-S based minerals indicate that the out-of-plane motion of Cu in the tetrahedrite is the source of the glasslike thermophysical properties.
引用
收藏
页数:4
相关论文
共 28 条
[1]   The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data [J].
Andreasen, Jens Wenzel ;
Makovicky, Emil ;
Lebech, Bente ;
Moller, Sven Karup .
PHYSICS AND CHEMISTRY OF MINERALS, 2008, 35 (08) :447-454
[2]  
[Anonymous], PHYS CHEM INORGANIC
[3]   Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases [J].
Barbier, Tristan ;
Lemoine, Pierric ;
Gascoin, Stephanie ;
Lebedev, Oleg I. ;
Kaltzoglou, Andreas ;
Vaqueiro, Paz ;
Powell, Anthony V. ;
Smith, Ron I. ;
Guilmeau, Emmanuel .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 634 :253-262
[4]   Thermoelectric properties of a Mn substituted synthetic tetrahedrite [J].
Chetty, Raju ;
Kumar, Prem D. S. ;
Rogl, Gerda ;
Rogl, Peter ;
Bauer, Ernst ;
Michor, Herwig ;
Suwas, Satyam ;
Puchegger, Stephan ;
Giester, Gerald ;
Mallik, Ramesh Chandra .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (03) :1716-1727
[5]  
Feynman R. P., 1965, The Feynman Lectures on Physics, Quantum Mechanics, Section 21-8, V3
[6]   New data on the crystal structures of colusites and arsenosulvanites [J].
Frank-Kamenetskaya, OV ;
Rozhdestvenskaya, IV ;
Yanulova, LA .
JOURNAL OF STRUCTURAL CHEMISTRY, 2002, 43 (01) :89-100
[7]   Crystal structures of iron bearing tetrahedrite and tennantite at 25 and 250°C by means of Rietveld refinement of synchrotron data [J].
Friese, Karen ;
Grzechnik, Andrzej ;
Makovicky, Emil ;
Balic-Zunic, Tonci ;
Karup-Moller, Sven .
PHYSICS AND CHEMISTRY OF MINERALS, 2008, 35 (08) :455-465
[8]   Enhanced Thermoelectric Performance of Synthetic Tetrahedrites [J].
Heo, Jaeseok ;
Laurita, Geneva ;
Muir, Sean ;
Subramanian, M. A. ;
Keszler, Douglas A. .
CHEMISTRY OF MATERIALS, 2014, 26 (06) :2047-2051
[9]  
Ishii I., COMMUNICATION
[10]  
Kittel C., 2005, Introduction to Solid State Physics