On the limit behavior of recurrence coefficients for multiple orthogonal polynomials

被引:31
作者
Aptekarev, AI
Kalyagin, V
Lagomasino, GL
Rocha, IA
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
[2] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow, Russia
[3] Higher Sch Econ, Nizhnii Novgorod, Russia
[4] Univ Politecn Madrid, EUIT Telecomun, Dept Matemat Aplicada, Madrid 28031, Spain
基金
俄罗斯基础研究基金会;
关键词
Hermite-Pade orthogonal polynomials; simultaneous orthogonality; Nikishin systems; Angelesco systems; ratio asymptotic; recurrence relation; limit periodic coefficients;
D O I
10.1016/j.jat.2005.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate general properties of the coefficients in the recurrence relation satisfied by multiple orthogonal polynomials. The results include as particular cases Angelesco and Nikishin systems. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:346 / 370
页数:25
相关论文
共 16 条
[1]  
[Anonymous], COMPUT METHODS FUNCT
[2]  
Aptekarev A., 1998, Rend. Circ. Matem. Palermo, Ser. II, V52, P3
[3]  
Aptekarev A.I., 1989, Math. USSR Sb., V64, P57
[4]   Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems [J].
Aptekarev, AI ;
Lagomasino, GL ;
Rocha, IA .
SBORNIK MATHEMATICS, 2005, 196 (7-8) :1089-1107
[5]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[6]   Strong asymptotics of multiply orthogonal polynomials for Nikishin systems [J].
Aptekarev, AI .
SBORNIK MATHEMATICS, 1999, 190 (5-6) :631-669
[7]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[8]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[9]   NORMALITY IN NIKISHIN SYSTEMS [J].
DRIVER, K ;
STAHL, H .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1994, 5 (02) :161-187
[10]  
FIDALGO U, 2004, J APPROX THEORY, V126, P171