Scaling of conductance through quantum dots with magnetic field

被引:7
作者
Hamad, I. J. [1 ]
Gazza, C. [1 ]
Andrade, J. A. [2 ,3 ]
Aligia, A. A. [2 ,3 ]
Cornaglia, P. S. [2 ,3 ]
Roura-Bas, P. [4 ]
机构
[1] Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Comis Nacl Energia Atom, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Comis Nacl Energia Atom, Dept Fis, Ctr Atom Constituyentes, RA-1429 Buenos Aires, DF, Argentina
关键词
RENORMALIZATION-GROUP APPROACH; ANDERSON MODEL; PERTURBATION EXPANSION; DENSITY; TRANSPORT;
D O I
10.1103/PhysRevB.92.195113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using different techniques, and Fermi-liquid relationships, we calculate the variation with the applied magnetic field ( up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit U >> Delta where U is the Coulomb repulsion and Delta is half the resonant-level width, and consider several values of the dot level energy E-d, ranging from the Kondo regime epsilon(F) -E-d >> Lambda to the intermediate-valence regime epsilon(F) -E-d similar to Lambda, where epsilon(F) is the Fermi energy. We have mainly used the density-matrix renormalization group (DMRG) and the numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from the DMRG and NRG + RPT are compared with the corresponding Bethe ansatz results for U -> infinity, showing an excellent agreement once E-d is renormalized by a constant Haldane shift. For U < 3 Delta a simple perturbative approach in U agrees very well with the other methods. The conductance decreases with the applied magnetic field for dot occupancies n(d) similar to 1 and increases for n(d) similar to 0.5 or n(d) similar to 1.5 regardless of the value of U. We also relate the energy scale for the magnetic-field dependence of the conductance with the width of the low-energy peak in the spectral density of the dot.
引用
收藏
页数:9
相关论文
共 89 条
[11]   Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot [J].
Amasha, S. ;
Keller, A. J. ;
Rau, I. G. ;
Carmi, A. ;
Katine, J. A. ;
Shtrikman, Hadas ;
Oreg, Y. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[12]   Out of equilibrium transport through an Anderson impurity: probing scaling laws within the equation of motion approach [J].
Balseiro, C. A. ;
Usaj, G. ;
Sanchez, M. J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (42)
[13]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[14]   Mesoscopic features in the transport properties of a Kondo-correlated quantum dot in a magnetic field [J].
Camjayi, Alberto ;
Arrachea, Liliana .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (03)
[15]   Alternative discretization in the numerical renormalization-group method [J].
Campo, VL ;
Oliveira, LN .
PHYSICAL REVIEW B, 2005, 72 (10)
[16]   Strongly correlated regimes in a double quantum dot device [J].
Cornaglia, PS ;
Grempel, DR .
PHYSICAL REVIEW B, 2005, 71 (07)
[17]   Magnetotransport through a strongly interacting quantum dot [J].
Costi, TA .
PHYSICAL REVIEW B, 2001, 64 (24)
[18]   A tunable Kondo effect in quantum dots [J].
Cronenwett, SM ;
Oosterkamp, TH ;
Kouwenhoven, LP .
SCIENCE, 1998, 281 (5376) :540-544
[19]   Transport properties and Kondo correlations in nanostructures: Time-dependent DMRG method applied to quantum dots coupled to Wilson chains [J].
da Silva, Luis G. G. V. D. ;
Heidrich-Meisner, F. ;
Feiguin, A. E. ;
Buesser, C. A. ;
Martins, G. B. ;
Anda, E. V. ;
Dagotto, E. .
PHYSICAL REVIEW B, 2008, 78 (19)
[20]   Spin-polarized conductance in double quantum dots: Interplay of Kondo, Zeeman, and interference effects [J].
Dias da Silva, Luis G. G. V. ;
Vernek, E. ;
Ingersent, K. ;
Sandler, N. ;
Ulloa, S. E. .
PHYSICAL REVIEW B, 2013, 87 (20)