Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

被引:54
作者
Ko, Wen-Yin [1 ]
Chen, You-Feng [1 ]
Lu, Ke-Ming [1 ]
Lin, Kuan-Jiuh [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Chem, Taichung 402, Taiwan
关键词
HIGH-PERFORMANCE; CARBON; NANOSTRUCTURES; NANOSHEETS; STORAGE;
D O I
10.1038/srep18887
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles). These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
[2]  
2-G
[3]   Towards Textile Energy Storage from Cotton T-Shirts [J].
Bao, Lihong ;
Li, Xiaodong .
ADVANCED MATERIALS, 2012, 24 (24) :3246-3252
[4]   Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors [J].
Byon, Hye Ryung ;
Lee, Seung Woo ;
Chen, Shuo ;
Hammond, Paula T. ;
Shao-Horn, Yang .
CARBON, 2011, 49 (02) :457-467
[5]   A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids [J].
Cai, Weihua ;
Lai, Ting ;
Dai, Wanlin ;
Ye, Jianshan .
JOURNAL OF POWER SOURCES, 2014, 255 :170-178
[6]   Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors [J].
Ghodbane, Ouassim ;
Pascal, Jean-Louis ;
Favier, Frederic .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (05) :1130-1139
[7]   Flexible energy storage devices based on graphene paper [J].
Gwon, Hyeokjo ;
Kim, Hyun-Suk ;
Lee, Kye Ung ;
Seo, Dong-Hwa ;
Park, Yun Chang ;
Lee, Yun-Sung ;
Ahn, Byung Tae ;
Kang, Kisuk .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1277-1283
[8]   Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading [J].
Hu, Liangbing ;
Chen, Wei ;
Xie, Xing ;
Liu, Nian ;
Yang, Yuan ;
Wu, Hui ;
Yao, Yan ;
Pasta, Mauro ;
Alshareef, Husam N. ;
Cui, Yi .
ACS NANO, 2011, 5 (11) :8904-8913
[9]   Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors [J].
Huang, Zhen-Dong ;
Zhang, Biao ;
Oh, Sei-Woon ;
Zheng, Qing-Bin ;
Lin, Xiu-Yi ;
Yousefi, Nariman ;
Kim, Jang-Kyo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (08) :3591-3599
[10]   Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes [J].
Kaempgen, Martti ;
Chan, Candace K. ;
Ma, J. ;
Cui, Yi ;
Gruner, George .
NANO LETTERS, 2009, 9 (05) :1872-1876