Tuning Cobalt-Free Nickel-Rich Layered LiNi0.9Mn0.1O2Cathode Material for Lithium-Ion Batteries

被引:24
作者
Ma, Rui [1 ]
Zhao, Zhikun [1 ]
Fu, Jiale [1 ]
Lv, Haijian [1 ]
Li, Chunli [1 ]
Wu, Borong [1 ]
Mu, Daobin [1 ]
Wu, Feng [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing, Peoples R China
基金
对外科技合作项目(国际科技项目);
关键词
nickel-rich materials; cobalt-free materials; cathodes; LiNi0; 9Mn0; 1O(2); lithium-ion batteries; NANOSTRUCTURED CATHODE MATERIALS; X-RAY-DIFFRACTION; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; OXIDES;
D O I
10.1002/celc.202000443
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As the demand for high-energy-density batteries becomes more and more urgent, cathode materials of high-energy lithium-ion batteries have received widespread attention. LiNixCoyMn1-x-yO2(NCM) ternary materials with high nickel and low cobalt content as well as a high cut-off voltage are continually pursued. Here, a nickel-rich cobalt-free cathode material, LiNi0.9Mn0.1O2, was synthesized by using a co-precipitation method to achieve a stable structure and excellent electrochemical performance. It shows a discharge specific capacity of 190 mAhg(-1)in the first cycle at a rate of 0.2 C, and a capacity retention of 93 % over 150 cycles at 2.7-4.3 V. It also exhibits excellent electrochemical performance under high cut-off voltage. The initial discharge specific capacity reaches 197.5 mAhg(-1)at 0.2 C within 2.7 to 4.5 V, and the capacity retains 188.9 mAhg(-1)after 100 cycles. The work provides an alternative cathode material for high-energy-density and cost-effective lithium-ion batteries.
引用
收藏
页码:2637 / 2642
页数:6
相关论文
共 40 条
[1]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[2]   On the LiNi0.2Mn0.2Co0.6O2 positive electrode material [J].
Bentaleb, Yassine ;
Saadoune, Ismael ;
Maher, Kenza ;
Saadi, Latifa ;
Fujimoto, Kenjiro ;
Ito, Shigeru .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1510-1515
[3]   Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion [J].
Ferchichi, Karima ;
Hbaieb, Souhaira ;
Amdouni, Noureddine ;
Pralong, Valerie ;
Chevalier, Yves .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (05) :1435-1447
[4]   Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries [J].
Gao, Han ;
Maglia, Filippo ;
Lamp, Peter ;
Armine, Khalil ;
Chen, Zonghai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (51) :44542-44549
[5]   Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries [J].
Gao, Shuang ;
Zhan, Xiaowen ;
Cheng, Yang-Tse .
JOURNAL OF POWER SOURCES, 2019, 410 :45-52
[6]  
Hong J, 2016, ASIA S PACIF DES AUT, P781, DOI 10.1109/ASPDAC.2016.7428106
[7]   Hollow 0.3Li2MnO3•0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries [J].
Jiang, Yan ;
Yang, Ze ;
Luo, Wei ;
Hu, Xianluo ;
Huang, Yunhui .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2954-2960
[8]   High-Energy Density Core-Shell Structured Li[Ni0.95Co0.025Mn0.025]O2 Cathode for Lithium-Ion Batteries [J].
Jun, Do-Wook ;
Yoon, Chong S. ;
Kim, Un-Hyuck ;
Sun, Yang-Kook .
CHEMISTRY OF MATERIALS, 2017, 29 (12) :5048-5052
[9]   Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation [J].
Kim, Myung-Hyoon ;
Shin, Ho-Suk ;
Shin, Dongwook ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1328-1333
[10]  
Kono S., 2010, ELECTROCHEM SOC, P591