Numerical simulation of ultrasound transmission in cancellous bone

被引:0
作者
Padilla, F [1 ]
Bossy, E [1 ]
Haiat, G [1 ]
Jenson, F [1 ]
Laugier, P [1 ]
机构
[1] Univ Paris 06, CNRS, UMR 7623, Lab Imagerie Parametr, F-75006 Paris, France
来源
2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 | 2005年
关键词
ultrasound; cancellous bone; numerical simulation; synchrotron microtomography;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Numerical simulation of wave propagation is performed through 31 volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and were used as the input geometry in a three-dimensional (3D) finite-difference simulation tool developed in our laboratory. The simulation algorithm accounts for propagation in both the saturating fluid and bone but absorption is not taken into account. Numerical predictions are consistent with experimental observations in trabecular bones : linear frequency dependence of attenuation, quasi-linear increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow waves depending on the orientation of the trabecular network with respect to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in close agreement with the experimental data obtained for the same specimens. Coupling numerical simulation with real 3D bone microarchitecture provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.
引用
收藏
页码:2022 / 2025
页数:4
相关论文
共 24 条
[1]   Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models [J].
Bossy, E ;
Talmant, M ;
Laugier, P .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (05) :2314-2324
[2]   In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz [J].
Chaffaï, S ;
Padilla, F ;
Berger, G ;
Laugier, P .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 108 (03) :1281-1289
[3]   Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements:: Relationships to density and microstructure [J].
Chaffaî, S ;
Peyrin, F ;
Nuzzo, S ;
Porcher, R ;
Berger, G ;
Laugier, P .
BONE, 2002, 30 (01) :229-237
[4]   Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media [J].
Collino, F ;
Tsogka, C .
GEOPHYSICS, 2001, 66 (01) :294-307
[5]   Velocity dispersion of acoustic waves in cancellous bone [J].
Droin, P ;
Berger, G ;
Laugier, P .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1998, 45 (03) :581-592
[6]   Ultrasonic wave propagation in human cancellous bone: Application of Biot theory [J].
Fellah, ZEA ;
Chapelon, JY ;
Berger, S ;
Lauriks, W ;
Depollier, C .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 116 (01) :61-73
[7]   DO ULTRASOUND MEASUREMENTS ON THE OS CALCIS REFLECT MORE THE BONE MICROARCHITECTURE THAN THE BONE MASS - A 2-DIMENSIONAL HISTOMORPHOMETRIC STUDY [J].
HANS, D ;
ARLOT, ME ;
SCHOTT, AM ;
ROUX, JP ;
KOTZKI, PO ;
MEUNIER, PJ .
BONE, 1995, 16 (03) :295-300
[8]   Acoustic anisotropy in bovine cancellous bone [J].
Hosokawa, A ;
Otani, T .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 103 (05) :2718-2722
[9]   Ultrasonic wave propagation in bovine cancellous bone [J].
Hosokawa, A ;
Otani, T .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (01) :558-562
[10]   Ultrasonic propagation in cancellous bone: A new stratified model [J].
Hughes, ER ;
Leighton, TG ;
Petley, GW ;
White, PR .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1999, 25 (05) :811-821