Luminescence properties of chalcopyrite AgInS2 nanocrystals: Their origin and related electronic states

被引:52
作者
Hamanaka, Yasushi [1 ]
Ogawa, Tetsuya [1 ]
Tsuzuki, Masakazu [1 ]
Ozawa, Kohei [1 ]
Kuzuya, Toshihiro [2 ]
机构
[1] Nagoya Inst Technol, Dept Mat Sci & Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
[2] Muroran Inst Technol, Coll Design & Mfg Technol, Muroran, Hokkaido 0508585, Japan
关键词
Semiconductor nanocrystal; Quantum dot; Chalcopyrite; I-III-VI2; Luminescent quantum yield; DA pair recombination; CUINS2; NANOPARTICLES; PHOTOLUMINESCENCE;
D O I
10.1016/j.jlumin.2011.10.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the photoluminescence (PL) mechanisms of the chalcopyrite AgInS2 nanocrystals with dodecanethiol surfactants. The nanocrystals present broad PL spectra (full width at half maximum of 0.4 eV) with large Stokes-shifts (0.8-1.0 eV). Time-resolved PL measurements revealed that the PL decay time depends strongly on the emission energies corresponding to the temporal redshift of the PL bands. The PL bands also exhibit the blueshift with increasing excitation intensity. These characteristic behaviors observed in the PL spectra indicate that the luminescence of the AgInS2 nanocrystals originates from the electron-hole pair emission via donor-acceptor pair-like recombination mechanisms. The quantum yield (QY) of PL is up to > 40%, which is at least 4-fold larger compared with QYs reported for other chalcopyrite nanocrystals without ZnS shell ( < 10%), indicating that surface passivation of AgInS2 nanocrystals by dodecanethiol molecules efficiently eliminates surface defects act as non-radiative recombination centers. We conclude that the donor and acceptor states associated with the PL of AgInS2 nanocrystals originate from the lattice defects formed in the interior of nanocrystals, not on surfaces. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 124
页数:4
相关论文
共 22 条
[1]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[2]   Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor [J].
Castro, SL ;
Bailey, SG ;
Raffaelle, RP ;
Banger, KK ;
Hepp, AF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12429-12435
[3]   Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors [J].
Castro, SL ;
Bailey, SG ;
Raffaelle, RP ;
Banger, KK ;
Hepp, AF .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3142-3147
[4]   LUMINESCENCE AND PHOTOPHYSICS OF CDS SEMICONDUCTOR CLUSTERS - THE NATURE OF THE EMITTING ELECTRONIC STATE [J].
CHESTNOY, N ;
HARRIS, TD ;
HULL, R ;
BRUS, LE .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (15) :3393-3399
[5]   Synthesis, Characterization, and Growth Mechanism of n-Type CuInS2 Colloidal Particles [J].
Courtel, Fabrice M. ;
Paynter, Royston W. ;
Marsan, Benoit ;
Morin, Mario .
CHEMISTRY OF MATERIALS, 2009, 21 (16) :3752-3762
[6]   Defect-induced photoluminescence and third-order nonlinear optical response of chemically synthesized chalcopyrite CuInS2 nanoparticles [J].
Hamanaka, Y. ;
Kuzuya, T. ;
Sofue, T. ;
Kino, T. ;
Ito, K. ;
Sumiyama, K. .
CHEMICAL PHYSICS LETTERS, 2008, 466 (4-6) :176-180
[7]   Synthesis of chalcopyrite nanoparticles via thermal decomposition of metal-thiolate [J].
Kino, Takamitsu ;
Kuzuya, Toshihiro ;
Itoh, Keiichi ;
Sumiyama, Kenji ;
Wakamatsu, Takahide ;
Ichidate, Minoru .
MATERIALS TRANSACTIONS, 2008, 49 (03) :435-438
[8]   FLUORESCENCE QUANTUM YIELDS OF SOME RHODAMINE DYES [J].
KUBIN, RF ;
FLETCHER, AN .
JOURNAL OF LUMINESCENCE, 1982, 27 (04) :455-462
[9]   Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission [J].
Li, Liang ;
Pandey, Anshu ;
Werder, Donald J. ;
Khanal, Bishnu P. ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1176-1179
[10]   Properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods [J].
Lifshitz, E ;
Dag, I ;
Litvin, I ;
Hodes, G ;
Gorer, S ;
Reisfeld, R ;
Zelner, M ;
Minti, H .
CHEMICAL PHYSICS LETTERS, 1998, 288 (2-4) :188-196