Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products

被引:1182
作者
Gao, Dunfeng [1 ]
Aran-Ais, Rosa M. [1 ]
Jeon, Hyo Sang [1 ]
Roldan Cuenya, Beatriz [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, Dept Interface Sci, Berlin, Germany
基金
欧洲研究理事会;
关键词
SELECTIVE ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE REDUCTION; SINGLE-ATOM CATALYSTS; ELECTROCATALYTIC REDUCTION; POLYCRYSTALLINE COPPER; OPERANDO SPECTROSCOPY; THEORETICAL INSIGHTS; OXIDATION-STATE; CU CATALYSTS; AQUEOUS CO2;
D O I
10.1038/s41929-019-0235-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy densities, is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from a high overpotential, a low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu-bimetallic catalysts, as well as some alternative materials, are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries and compositions in synergy with a well-chosen electrolyte are also provided.
引用
收藏
页码:198 / 210
页数:13
相关论文
共 134 条
[1]   Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells [J].
Ampelli, C. ;
Genovese, C. ;
Marepally, B. C. ;
Papanikolaou, G. ;
Perathoner, S. ;
Centi, G. .
FARADAY DISCUSSIONS, 2015, 183 :125-145
[2]   Structure- and Electrolyte-Sensitivity in CO2 Electroreduction [J].
Aran-Ais, Rosa M. ;
Gao, Dunfeng ;
Roldan Cuenya, Beatriz .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2906-2917
[3]   Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction [J].
Ayemoba, Onagie ;
Cuesta, Angel .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) :27377-27382
[4]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[5]   TiC- and TiN-Supported Single-Atom Catalysts for Dramatic Improvements in CO2 Electrochemical Reduction to CH4 [J].
Backs, Seoin ;
Jung, Yousung .
ACS ENERGY LETTERS, 2017, 2 (05) :969-975
[6]   Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction [J].
Bagger, Alexander ;
Ju, Wen ;
Varela, Ana Sofia ;
Strasser, Peter ;
Rossmeisl, Jan .
CATALYSIS TODAY, 2017, 288 :74-78
[7]   CO2 electroreduction on copper- cobalt nanoparticles: Size and composition effect [J].
Bernal, M. ;
Bagger, A. ;
Scholten, F. ;
Sinev, I. ;
Bergmann, A. ;
Ahmadi, M. ;
Rossmeisl, J. ;
Roldan Cuenya, Beatriz .
NANO ENERGY, 2018, 53 :27-36
[8]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[9]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[10]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285