A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution

被引:88
作者
Everts-van der Wind, A
Larkin, DM
Green, CA
Elliott, JS
Olmstead, CA
Chiu, R
Schein, JE
Marra, MA
Womack, JE [1 ]
Lewin, HA
机构
[1] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Gen Biol, Urbana, IL 61801 USA
[3] Texas A&M Univ, Dept Vet Pathobiol, College Stn, TX 77843 USA
[4] British Columbia Canc Agcy, Gen Sci Ctr, Vancouver, BC V5Z 4S6, Canada
关键词
comparative genomics; radiation hybrid; map integration;
D O I
10.1073/pnas.0509285102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Approximately 3,000 cattle bacterial artificial chromosome (BAC)-end sequences were added to the Illinois-Texas 5,000-rad RH (RH, radiation hybrid) map. The BAC-end sequences selected for mapping are approximate to 1 Mbp apart on the human chromosomes as determined by BLASTN analysis. The map has 3,484 ordered markers, of which 3,204 are anchored in the human genome. Two hundred-and-one homologous synteny blocks (HSBs) were identified, of which 27 are previously undiscovered, 79 are extended, 26 were formed by previously unrecognized breakpoints in 18 previously defined HSBs, and 23 are the result of fusions. The comparative coverage relative to the human genome is approximate to 91 %, or 97% of the theoretical maximum. The positions of 64% of all cattle centromeres and telomeres were reassigned relative to their positions on the previous map, thus facilitating a more detailed comparative analysis of centromere and telomere evolution. As an example of the utility of the high-resolution map, 22 cattle BAC fingerprint contigs were directly anchored to cattle chromosome 19 [Bos taurus, (BTA) 19]. The order of markers on the cattle RH and fingerprint maps of BTA19 and the sequence-based map of human chromosome 17 [Homo sapiens, (HSA) 17] were found to be highly consistent, with only two minor ordering discrepancies between the RH map and fingerprint contigs. The high-resolution Illinois-Texas 5,000-rad RH and comparative maps will facilitate identification of candidate genes for economically important traits, the phylogenomic analysis of mammalian chromosomes, proofing of the BAC fingerprint map and, ultimately, aid the assembly of cattle whole-genome sequence.
引用
收藏
页码:18526 / 18531
页数:6
相关论文
共 22 条
[1]   A fast and scalable radiation hybrid map construction and integration strategy [J].
Agarwala, R ;
Applegate, DL ;
Maglott, D ;
Schuler, GD ;
Schäffer, AA .
GENOME RESEARCH, 2000, 10 (03) :350-364
[2]  
Applegate D., 1998, DOC MATH J DTSCH MAT, P645
[3]   An ordered comparative map of the cattle and human genomes [J].
Band, MR ;
Larson, JH ;
Rebeiz, M ;
Green, CA ;
Heyen, DW ;
Donovan, J ;
Windish, R ;
Steining, C ;
Mahyuddin, P ;
Womack, JE ;
Lewin, HA .
GENOME RESEARCH, 2000, 10 (09) :1359-1368
[4]   On constructing radiation hybrid maps [J].
BenDor, A ;
Chor, B .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1997, 4 (04) :517-533
[5]   Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle [J].
Cohen-Zinder, M ;
Seroussi, E ;
Larkin, DM ;
Loor, JJ ;
Everts-van der Wind, A ;
Lee, JH ;
Drackley, JK ;
Band, MR ;
Hernandez, AG ;
Shani, M ;
Lewin, HA ;
Weller, JI ;
Ron, M .
GENOME RESEARCH, 2005, 15 (07) :936-944
[6]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945
[7]   A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates [J].
Everts-van der Wind, A ;
Kata, SR ;
Band, MR ;
Rebeiz, M ;
Larkin, DM ;
Everts, RE ;
Green, CA ;
Liu, L ;
Natarajan, S ;
Goldammer, T ;
Lee, JH ;
McKay, S ;
Womack, JE ;
Lewin, HA .
GENOME RESEARCH, 2004, 14 (07) :1424-1437
[8]   Why mice have lost genes for COL21A1, STK17A, GPR145 and AHRI:: evidence for gene deletion at evolutionary breakpoints in the rodent lineage [J].
Fitzgerald, J ;
Bateman, JF .
TRENDS IN GENETICS, 2004, 20 (09) :408-412
[9]   Genome sequence of the Brown Norway rat yields insights into mammalian evolution [J].
Gibbs, RA ;
Weinstock, GM ;
Metzker, ML ;
Muzny, DM ;
Sodergren, EJ ;
Scherer, S ;
Scott, G ;
Steffen, D ;
Worley, KC ;
Burch, PE ;
Okwuonu, G ;
Hines, S ;
Lewis, L ;
DeRamo, C ;
Delgado, O ;
Dugan-Rocha, S ;
Miner, G ;
Morgan, M ;
Hawes, A ;
Gill, R ;
Holt, RA ;
Adams, MD ;
Amanatides, PG ;
Baden-Tillson, H ;
Barnstead, M ;
Chin, S ;
Evans, CA ;
Ferriera, S ;
Fosler, C ;
Glodek, A ;
Gu, ZP ;
Jennings, D ;
Kraft, CL ;
Nguyen, T ;
Pfannkoch, CM ;
Sitter, C ;
Sutton, GG ;
Venter, JC ;
Woodage, T ;
Smith, D ;
Lee, HM ;
Gustafson, E ;
Cahill, P ;
Kana, A ;
Doucette-Stamm, L ;
Weinstock, K ;
Fechtel, K ;
Weiss, RB ;
Dunn, DM ;
Green, ED .
NATURE, 2004, 428 (6982) :493-521
[10]   Positional candidate cloning of a QTL in dairy cattle:: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition [J].
Grisart, B ;
Coppieters, W ;
Farnir, F ;
Karim, L ;
Ford, C ;
Berzi, P ;
Cambisano, N ;
Mni, M ;
Reid, S ;
Simon, P ;
Spelman, R ;
Georges, M ;
Snell, R .
GENOME RESEARCH, 2002, 12 (02) :222-231