Fine and Wilf's theorem for three periods and a generalization of Sturmian words

被引:48
作者
Castelli, MG [1 ]
Mignosi, F [1 ]
Restivo, A [1 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Applicaz, I-90123 Palermo, Italy
关键词
combinatorics on words; periodicity; Euclid's algorithm; Sturmian words;
D O I
10.1016/S0304-3975(98)00251-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend the theorem of Fine and Wilf to words having three periods. We then define the set 3-PER of words of maximal length for which such result does not apply. We prove that the set 3-PER and the sequences of complexity 2n + 1, introduced by Arnoux and Rauzy to generalize Sturmian words, have the same set of factors. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 20 条
[1]  
ARNOUX P, 1994, B SOC MATH FR, V122, P1
[2]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[3]   Sturmian words, Lyndon words and trees [J].
Berstel, J ;
deLuca, A .
THEORETICAL COMPUTER SCIENCE, 1997, 178 (1-2) :171-203
[4]  
Berstel J., 1985, Pure Appl. Math., V117
[5]   ALGORITHM AND BOUND FOR GREATEST COMMON DIVISOR OF N INTEGERS [J].
BRADLEY, GH .
COMMUNICATIONS OF THE ACM, 1970, 13 (07) :433-&
[6]   SOME COMBINATORIAL PROPERTIES OF STURMIAN WORDS [J].
DELUCA, A ;
MIGNOSI, F .
THEORETICAL COMPUTER SCIENCE, 1994, 136 (02) :361-385
[7]   Sturmian words: structure, combinatorics, and their arithmetics [J].
deLuca, A .
THEORETICAL COMPUTER SCIENCE, 1997, 183 (01) :45-82
[8]   Standard Sturmian morphisms [J].
deLuca, A .
THEORETICAL COMPUTER SCIENCE, 1997, 178 (1-2) :205-224
[9]   UNIQUENESS THEOREMS FOR PERIODIC FUNCTIONS [J].
FINE, NJ ;
WILF, HS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :109-&
[10]  
Graham RL., 1988, Concrete Mathematics