Interfacial aspects of carbon composites

被引:50
作者
Paul, Rajib [1 ]
Dai, Liming [1 ]
机构
[1] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
关键词
Composite; carbon fiber; carbon nanotubes; graphene; polymers; interfaces; INTERLAMINAR FRACTURE-TOUGHNESS; CONDUCTIVE POLYMER COMPOSITES; REDUCED GRAPHENE OXIDE; REINFORCED POLYETHERSULFONE COMPOSITES; ENHANCED MECHANICAL-PROPERTIES; ELECTRICAL-CONDUCTIVITY; FIBER/EPOXY COMPOSITE; FUNCTIONALIZED GRAPHENE; EPOXY COMPOSITES; THERMAL-CONDUCTIVITY;
D O I
10.1080/09276440.2018.1439632
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon-based composites bring great promise for various practical applications ranging from aviation industry to advanced biomedical sensors. The interface chemistry and the ultimate conductivity of these composites are responsible for their functional applicability. The interfaces can be modified by various chemical and physical techniques. This article reviews the synthesis methods of carbon composites and discusses how the interface properties dictate their applicability. [GRAPHICS] .
引用
收藏
页码:539 / 605
页数:67
相关论文
共 314 条
[1]   Enhancement of pyramid solar still productivity using absorber plates made of carbon fiber/CNT-modified epoxy composites [J].
Abdelal, Nisrin ;
Taamneh, Yazan .
DESALINATION, 2017, 419 :117-124
[2]   Label-Free, Single Protein Detection on a Near-Infrared Fluorescent Single-Walled Carbon Nanotube/Protein Microarray Fabricated by Cell-Free Synthesis [J].
Ahn, Jin-Ho ;
Kim, Jong-Ho ;
Reuel, Nigel F. ;
Barone, Paul W. ;
Boghossian, Ardemis A. ;
Zhang, Jingqing ;
Yoon, Hyeonseok ;
Chang, Alice C. ;
Hilmer, Andrew J. ;
Strano, Michael S. .
NANO LETTERS, 2011, 11 (07) :2743-2752
[3]   Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes [J].
Alian, A. R. ;
Kundalwal, S. I. ;
Meguid, S. A. .
COMPOSITE STRUCTURES, 2015, 131 :545-555
[4]   Establishment, morphology and properties of carbon nanotube networks in polymer melts [J].
Alig, Ingo ;
Poetschke, Petra ;
Lellinger, Dirk ;
Skipa, Tetyana ;
Pegel, Sven ;
Kasaliwal, Gaurav R. ;
Villmow, Tobias .
POLYMER, 2012, 53 (01) :4-28
[5]   Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties [J].
An, Qi ;
Rider, Andrew N. ;
Thostenson, Erik T. .
CARBON, 2012, 50 (11) :4130-4143
[6]   Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer [J].
Arai, Masahiro ;
Noro, Yukihiro ;
Sugimoto, Koh-Ichi ;
Endo, Morinobu .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) :516-525
[7]  
Arash B, 2014, SCI REP-UK, V4, DOI [10.1038/srep06479, 10.1038/srep04770, 10.1038/srep05848]
[8]   Fire performance of composites made from carbon/phenolic prepregs with nanoclays [J].
Asaro, L. ;
Villanueva, S. ;
Alvarez, V. ;
Manfredi, L. B. ;
Rodriguez, E. S. .
JOURNAL OF COMPOSITE MATERIALS, 2017, 51 (25) :3515-3524
[9]   Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites [J].
Ashori, Alireza ;
Rahmani, Hossein ;
Bahrami, Reza .
POLYMER TESTING, 2015, 48 :82-88
[10]   Highly Thermally Conductive Yet Flexible Composite of Carbon Fiber, Carbon Nanotube, and Rubber Obtained by Decreasing the Thermal Resistivity at the Interface between Carbon Fiber and Carbon Nanotube [J].
Ata, Seisuke ;
Subramaniam, Chandramouli ;
Nishizawa, Ayumi ;
Yamada, Takeo ;
Hata, Kenji .
ADVANCED ENGINEERING MATERIALS, 2017, 19 (02)