Diffusion Weighted Image Denoising Using Overcomplete Local PCA

被引:312
作者
Manjon, Jose V. [1 ]
Coupe, Pierrick [2 ]
Concha, Luis [3 ]
Buades, Antonio [4 ,5 ]
Collins, D. Louis [6 ]
Robles, Montserrat [1 ]
机构
[1] Univ Politecn Valencia, Inst Aplicac Tecnol Informac & Comunicac Avanzado, E-46071 Valencia, Spain
[2] Unite Mixte Rech CNRS UMR 5800, Lab Bordelais Rech Informat, F-33405 Talence, France
[3] Univ Nacl Autonoma Mexico, Inst Neurobiol, Queretaro, Mexico
[4] ENS Cachan, CMLA, F-94235 Cachan, France
[5] Univ Illes Balears, Dept Matemat, Palma De Mallorca, Spain
[6] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
关键词
RICIAN NOISE REMOVAL; FIBER-TRACKING; TENSOR; REDUCTION;
D O I
10.1371/journal.pone.0073021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters.
引用
收藏
页数:12
相关论文
共 48 条
[1]  
Aja-Fernández S, 2008, IEEE T MED IMAGING, V27, P1389, DOI 10.1109/TMI.2008.920609
[2]  
[Anonymous], BMVC2011
[3]  
[Anonymous], 1976, Linear Algebra and Its Applications
[4]   Structure-adaptive sparse denoising for diffusion-tensor MRI [J].
Bao, Lijun ;
Robini, Marc ;
Liu, Wanyu ;
Zhu, Yuemin .
MEDICAL IMAGE ANALYSIS, 2013, 17 (04) :442-457
[5]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[6]  
Basu S, 2006, LECT NOTES COMPUT SC, V4190, P117
[7]   Noise reduction in multiple-echo data sets using singular value decomposition [J].
Bydder, Mark ;
Du, Jiang .
MAGNETIC RESONANCE IMAGING, 2006, 24 (07) :849-856
[8]   Noise removal in magnetic resonance diffusion tensor imaging [J].
Chen, B ;
Hsu, EW .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) :393-401
[9]   A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms [J].
Close, Thomas G. ;
Tournier, Jacques-Donald ;
Calamante, Fernando ;
Johnston, Leigh A. ;
Mareels, Iven ;
Connelly, Alan .
NEUROIMAGE, 2009, 47 (04) :1288-1300
[10]  
Coifman R, 1995, SPRINGER VERLAG LECT