Denitrification of industrial wastewater: Influence of glycerol addition on metabolic activity and community shifts in a microbial consortium

被引:23
作者
Cyplik, Pawel [1 ]
Juzwa, Wojciech [1 ]
Marecik, Roman [1 ]
Powierska-Czarny, Jolanta [2 ]
Piotrowska-Cyplik, Agnieszka [3 ]
Czarny, Jakub [2 ]
Drozdzynska, Agnieszka [1 ]
Chrzanowski, Lukasz [4 ]
机构
[1] Poznan Univ Life Sci, Dept Biotechnol & Food Microbiol, PL-60627 Poznan, Poland
[2] Inst Forens Genet, PL-85071 Bydgoszcz, Poland
[3] Poznan Univ Life Sci, Inst Food Technol Plant Origin, PL-60624 Poznan, Poland
[4] Poznan Univ Tech, Inst Chem Technol & Engn, PL-60965 Poznan, Poland
关键词
Denitrification; Glycerol; Microbial consortium; Metabolic activity; CARBON SOURCE; BIOLOGICAL DENITRIFICATION; ACTIVATED-SLUDGE; NITRATE; BIODEGRADATION; DIVERSITY; NITROESTERS; PERFORMANCE; NITRITE; RIVER;
D O I
10.1016/j.chemosphere.2013.09.083
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The wastewater originating from explosives manufacturing plants are characterized by a high concentration of nitrates (3200 mg N L-1), sulfates (1470 mg L-1) and low pH (1.5) as well as the presence of organic compounds, such as nitroglycerin (1.9 mg L-1) and nitroglycol (4.8 mg L-1). The application of glycerol (C/N = 3) at such a high concentration enabled complete removal of nitrates and did not cause the anaerobic glycerol metabolic pathway of the DNC4 consortium to activate, as confirmed by the low concentrations of 1,3-propanediol (0.16 g L-1) and acetic acid (0.11 g L-1) in the wastewater. Increasing the glycerol content (C/N = 5) contributed to a notable increase in the concentration of both compounds: 1.12 g L-1 for acetic acid and 1.82 for 1,3-PD (1,3-propanediol). The nitrate reduction rate was at 44 mg N g(-1) biomass d(-1). In order to assess the metabolic activity of the microorganisms, a method to determine the redox potential was employed. It was established, that the microorganisms can be divided into four groups, based on the determined denitrification efficiency and zero-order nitrate removal constants. The first group, involving Pseudomonas putida and Pseudomonas stutzeri, accounts for microorganisms capable of the most rapid denitrification, the second involves rapid denitrifying microbes (Citrobacter freundi and Pseudomonas alcaligenes), the third group are microorganisms exhibiting moderate denitrification ability: Achrobactrum xylosoxidans, Ochrobactrum intermedium and Stenotrophomonas maltophila, while the last group consists of slow denitrifying bacteria: Rodococcus rubber and Sphignobacterium muitivorum. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2823 / 2831
页数:9
相关论文
共 50 条
[1]   Denitrification and bacterial community structure in the cascade of six reservoirs on a tropical river in Brazil [J].
Abe, DS ;
Matsumura-Tundisi, T ;
Rocha, O ;
Tundisi, JG .
HYDROBIOLOGIA, 2003, 504 (1-3) :67-76
[2]   Denitrification in a packed bed biofilm reactor (BIOFOR) - Experiments with different carbon sources. [J].
Aesoy, A ;
Odegaard, H ;
Bach, K ;
Pujol, R ;
Hamon, M .
WATER RESEARCH, 1998, 32 (05) :1463-1470
[3]   Simultaneous denitrification and methanogenesis (SDM): Review of two decades of research [J].
Andalib, M. ;
Nakhla, G. ;
McIntee, E. ;
Zhu, J. .
DESALINATION, 2011, 279 (1-3) :1-14
[4]   Biotransformation of aromatic compounds from wastewaters containing N and/or S, by nitrification/denitrification: A review [J].
Beristain-Cardoso R. ;
Texier A.-C. ;
Razo-Flores E. ;
Méndez-Pampín R. ;
Gómez J. .
Reviews in Environmental Science and Bio/Technology, 2009, 8 (4) :325-342
[5]   Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater [J].
Bernet, N ;
Habouzit, F ;
Moletta, R .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1996, 46 (01) :92-97
[6]   Excess cell mass as an internal carbon source for biological denitrification [J].
Biradar, Prashant M. ;
Roy, S. B. ;
D'Souza, S. F. ;
Pandit, A. B. .
BIORESOURCE TECHNOLOGY, 2010, 101 (06) :1787-1791
[7]   Biodiesel waste as source of organic carbon for municipal WWTP denitrification [J].
Bodik, I. ;
Blstakova, A. ;
Sedlacek, S. ;
Hutnan, M. .
BIORESOURCE TECHNOLOGY, 2009, 100 (08) :2452-2456
[8]   Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View [J].
Carmona, Manuel ;
Teresa Zamarro, Maria ;
Blazquez, Blas ;
Durante-Rodriguez, Gonzalo ;
Juarez, Javier F. ;
Valderrama, J. Andres ;
Barragan, Maria J. L. ;
Garcia, Jose Luis ;
Diaz, Eduardo .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2009, 73 (01) :71-+
[9]   Debottlenecking the 1,3-propanediol pathway by metabolic engineering [J].
Celinska, E. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (04) :519-530
[10]   Biotechnological production of 2,3-butanediol-Current state and prospects [J].
Celinska, E. ;
Grajek, W. .
BIOTECHNOLOGY ADVANCES, 2009, 27 (06) :715-725