Particle filtering and marginalization for parameter identification in structural systems

被引:27
作者
Olivier, Audrey [1 ]
Smyth, Andrew W. [1 ]
机构
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
particle filter; Rao-Blackwellisation; parameter identification; nonlinear estimation; second-order EKF;
D O I
10.1002/stc.1874
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In structural health monitoring, one wishes to use available measurements from a structure to assess structural condition, localize damage if present, and quantify remaining life. Nonlinear system identification methods are considered that use a parametric, nonlinear, physics-based model of the system, cast in the state-space framework. Various nonlinear filters and parameter learning algorithms can then be used to recover the parameters and quantify uncertainty. This paper focuses on the particle filter (PF), which shows the advantage of not assuming Gaussianity of the posterior densities. However, the PF is known to behave poorly in high dimensional spaces, especially when static parameters are added to the state vector. To improve the efficiency of the PF, the concept of Rao-Blackwellisation is applied, that is, we use conditional linearities present in the equations to marginalize out some of the states/parameters and infer their conditional posterior pdf using the Kalman filtering equations. This method has been studied extensively in the particle filtering literature, and we start our discussion by improving upon and applying two well-known algorithms on a benchmark structural system. Then, noticing that in structural systems, high nonlinearities are often localized while the remaining equations are bilinear in the states and parameters, a novel algorithm is proposed, which combines this marginalization approach with a second-order extended Kalman filter. This new approach enables us to marginalize out all the states/parameters, which do not contribute to any high nonlinearity in the equations and, thus, improve identification of the unknown parameters. Copyright (C) 2016 JohnWiley & Sons, Ltd.
引用
收藏
页数:25
相关论文
共 50 条
[21]   A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems [J].
Wan, Zhimin ;
Wang, Ting ;
Li, Lin ;
Xu, Zhichao .
SHOCK AND VIBRATION, 2018, 2018
[22]   Parameter Estimation of Stochastic Fractional Dynamic Systems Using Nonlinear Bayesian Filtering System Identification Methods [J].
Erazo, Kalil ;
Di Matteo, Alberto ;
Spanos, Pol .
JOURNAL OF ENGINEERING MECHANICS, 2024, 150 (02)
[23]   The orthotopic spatial extension filtering based system identification algorithm for time-varying parameter systems [J].
Wang Z.-Y. ;
Zhang S. ;
Wang Y. ;
Liu Z.-X. ;
Ji Z.-C. .
Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (06) :1311-1318
[24]   Particle filtering with applications in networked systems: a survey [J].
Li, Wenshuo ;
Wang, Zidong ;
Yuan, Yuan ;
Guo, Lei .
COMPLEX & INTELLIGENT SYSTEMS, 2016, 2 (04) :293-315
[25]   Particle filtering with applications in networked systems: a survey [J].
Wenshuo Li ;
Zidong Wang ;
Yuan Yuan ;
Lei Guo .
Complex & Intelligent Systems, 2016, 2 (4) :293-315
[26]   Improved Particle Filtering for State and Parameter Estimation- CSTR Model [J].
Mansouri, Majdi ;
Nounou, Hazem ;
Nounou, Mohamed .
2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
[27]   Identification of nonlinear parameter varying systems with missing output data [J].
Deng, Jing ;
Huang, Biao .
AICHE JOURNAL, 2012, 58 (11) :3454-3467
[28]   Time-Variant Structural Parameter Identification [J].
Ding, Yong ;
Law, Siu Seong .
DYNAMICS FOR SUSTAINABLE ENGINEERING, 2011, VOL 4, 2011, :1699-1708
[29]   Bayesian State Estimation in Sensorimotor Systems With Particle Filtering [J].
Guang, Hui ;
Ji, Linhong .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (07) :1528-1538
[30]   Particle filtering for state estimation in industrial robotic systems [J].
Rigatos, G. G. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2008, 222 (I6) :437-455