GLOBAL WELL-POSEDNESS OF NLS-KDV SYSTEMS FOR PERIODIC FUNCTIONS

被引:0
|
作者
Matheus, Carlos [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
Global well-posedness; Schrodinger-Korteweg-de Vries system; I-method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Cauchy problem of the Schrodinger-Korteweg-deVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H-1 x H-1. More precisely, we show that the non-resonant NLS-KdV system is globally well-posed for initial data in H-s(T) x H-s(T) with s > 11/13 and the resonant NLS-KdV system is globally well-posed with s > 8/9. The strategy is to apply the I-method used by Colliander, Keel, Staffilani, Takaoka and Tao. By doing this, we improve the results by Arbieto, Corcho and Matheus concerning the global well-posedness of NLS-KdV systems.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Unconditional local well-posedness for periodic NLS
    Kishimoto, Nobu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 766 - 787
  • [2] Global Well-Posedness for Cubic NLS with Nonlinear Damping
    Antonelli, Paolo
    Sparber, Christof
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (12) : 2310 - 2328
  • [3] GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    FORUM OF MATHEMATICS SIGMA, 2018, 6
  • [4] Well-posedness for the NLS hierarchy
    Adams, Joseph
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
  • [5] On the well-posedness for NLS in Hs
    Fang, Daoyuan
    Han, Zheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) : 1438 - 1455
  • [6] Global well-posedness for a coupled modified KdV system
    Corcho, Adan J.
    Panthee, Mahendra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (01): : 27 - 57
  • [7] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749
  • [8] Global well-posedness for a coupled modified KdV system
    Adán J. Corcho
    Mahendra Panthee
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 27 - 57
  • [9] On the well-posedness of the periodic KdV equation in high regularity classes
    Kappeler, Thomas
    Poeschel, Juergen
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 431 - +
  • [10] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS
    Nahmod, Andrea R.
    Oh, Tadahiro
    Rey-Bellet, Luc
    Staffilani, Gigliola
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (04) : 1275 - 1330