A 7/8-approximation algorithm for metric max TSP

被引:27
作者
Hassin, R [1 ]
Rubinstein, S [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
关键词
analysis of algorithms; maximum traveling salesman problem;
D O I
10.1016/S0020-0190(01)00234-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a randomized approximation algorithm for the metric version of undirected Max TSP. Its expected performance 7/8 as n --> infinity, where n is the number of vertices in the graph. (C) 2002 Elsevier Science B.V. All rights guarantee reserved.
引用
收藏
页码:247 / 251
页数:5
相关论文
共 7 条
[1]  
Barvinok A, 1998, LECT NOTES COMPUT SC, V1412, P195
[2]  
BARVINOK A, IN PRESS TRAVELING S
[3]  
HARTVIGSEN DB, 1984, THESIS CARNEGIE MELL
[4]   Better approximations for max TSP [J].
Hassin, R ;
Rubinstein, S .
INFORMATION PROCESSING LETTERS, 2000, 75 (04) :181-186
[5]  
KOSTOCHKA AV, 1985, UPRAVLYAEMYE SISTEMY, V26, P55
[6]  
Pekny J. F., 1994, ORSA Journal on Computing, V6, P68, DOI 10.1287/ijoc.6.1.68
[7]  
SERDYUKOV AI, 1984, UPRAVLYAEMYE SISTEMY, V25, P80