JOYCE Julich Observatory for Cloud Evolution

被引:80
作者
Loehnert, U. [1 ]
Schween, J. H. [1 ]
Acquistapace, C. [1 ]
Ebell, K. [1 ]
Maahn, M. [1 ]
Barrera-Verdejo, M. [1 ]
Hirsikko, A. [2 ]
Bohn, B. [2 ]
Knaps, A. [3 ]
O'Connor, E. [4 ,5 ]
Simmer, C. [6 ]
Wahner, A. [2 ]
Crewell, S. [1 ]
机构
[1] Univ Cologne, Inst Geophys & Meteorol, D-50969 Cologne, Germany
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch Troposphare IEK 8, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Geshaftsbereich Sicherheit & Strahlenschutz S UM, D-52425 Julich, Germany
[4] Univ Reading, Dept Meteorol, Reading, Berks, England
[5] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[6] Univ Bonn, Inst Meteorol, Bonn, Germany
关键词
EMITTED RADIANCE INTERFEROMETER; LIQUID WATER PATH; MICROWAVE RADIOMETRY; BOUNDARY-LAYER; PART II; RETRIEVAL; AEROSOL; TEMPERATURE; MODELS; RADAR;
D O I
10.1175/BAMS-D-14-00105.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Julich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Julich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere-surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.
引用
收藏
页码:1157 / 1174
页数:18
相关论文
共 62 条
[11]   Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination [J].
Heese, B. ;
Flentje, H. ;
Althausen, D. ;
Ansmann, A. ;
Frey, S. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2010, 3 (06) :1763-1770
[12]   The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model [J].
Hogan, RJ ;
Mittermaier, MP ;
Illingworth, AJ .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2006, 45 (02) :301-317
[13]   AERONET - A federated instrument network and data archive for aerosol characterization [J].
Holben, BN ;
Eck, TF ;
Slutsker, I ;
Tanre, D ;
Buis, JP ;
Setzer, A ;
Vermote, E ;
Reagan, JA ;
Kaufman, YJ ;
Nakajima, T ;
Lavenu, F ;
Jankowiak, I ;
Smirnov, A .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (01) :1-16
[14]   Cloudnet -: Continuous evaluation of cloud profiles in seven operational models using ground-based observations [J].
Illingworth, A. J. ;
Hogan, R. J. ;
O'Connor, E. J. ;
Bouniol, D. ;
Brooks, M. E. ;
Delanoe, J. ;
Donovan, D. P. ;
Eastment, J. D. ;
Gaussiat, N. ;
Goddard, J. W. F. ;
Haeffelin, M. ;
Baltink, H. Klein ;
Krasnov, O. A. ;
Pelon, J. ;
Piriou, J.-M. ;
Protat, A. ;
Russchenberg, H. W. J. ;
Seifert, A. ;
Tompkins, A. M. ;
van Zadelhoff, G.-J. ;
Vinit, F. ;
Willen, U. ;
Wilson, D. R. ;
Wrench, C. L. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (06) :883-+
[15]   Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model [J].
Jiang, HL ;
Feingold, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D1)
[16]   REMOTE-SENSING OF CLOUD LIQUID WATER [J].
KARSTENS, U ;
SIMMER, C ;
RUPRECHT, E .
METEOROLOGY AND ATMOSPHERIC PHYSICS, 1994, 54 (1-4) :157-171
[17]   High-resolution simulation of shallow-to-deep convection transition over land [J].
Khairoutdinov, Marat ;
Randall, David .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2006, 63 (12) :3421-3436
[18]   Atmospheric emitted radiance interferometer. part I: Instrument design [J].
Knuteson, RO ;
Revercomb, HE ;
Best, FA ;
Ciganovich, NC ;
Dedecker, RG ;
Dirkx, TP ;
Ellington, SC ;
Feltz, WF ;
Garcia, RK ;
Howell, HB ;
Smith, WL ;
Short, JF ;
Tobin, DC .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2004, 21 (12) :1763-1776
[19]   Atmospheric emitted radiance interferometer. part II: Instrument performance [J].
Knuteson, RO ;
Revercomb, HE ;
Best, FA ;
Ciganovich, NC ;
Dedecker, RG ;
Dirkx, TP ;
Ellington, SC ;
Feltz, WF ;
Garcia, RK ;
Howell, HB ;
Smith, WL ;
Short, JF ;
Tobin, DC .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2004, 21 (12) :1777-1789
[20]   The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products [J].
Kollias, Pavlos ;
Clothiaux, Eugene E. ;
Miller, Mark A. ;
Luke, Edward P. ;
Johnson, Karen L. ;
Moran, Kenneth P. ;
Widener, Kevin B. ;
Albrecht, Bruce A. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2007, 24 (07) :1199-1214