Synchronization versus neighborhood similarity in complex networks of nonidentical oscillators

被引:10
作者
Freitas, Celso [1 ]
Macau, Elbert [1 ]
Viana, Ricardo Luiz [2 ]
机构
[1] Natl Inst Space Res INPE, Associate Lab Comp & Appl Math LAC, BR-12245970 Sao Jose Dos Campos, SP, Brazil
[2] Fed Univ Parana UFPR, Dept Phys, BR-81531990 Curitiba, Parana, Brazil
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
SELECTION;
D O I
10.1103/PhysRevE.92.032901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Does the assignment order of a fixed collection of slightly distinct subsystems into given communication channels influence the overall ensemble behavior? We discuss this question in the context of complex networks of nonidentical interacting oscillators. Three types of connection configurations are considered: Similar, Dissimilar, and Neutral patterns. These different groups correspond, respectively, to oscillators alike, distinct, and indifferent relative to their neighbors. To construct such scenarios we define a vertex-weighted graph measure, the total dissonance, which comprises the sum of the dissonances between all neighbor oscillators in the network. Our numerical simulations show that the more homogeneous a network, the higher tend to be both the coupling strength required for phase locking and the associated final phase configuration spread over the circle. On the other hand, the initial spread of partial synchronization occurs faster for Similar patterns in comparison to Dissimilar ones, while neutral patterns are an intermediate situation between both extremes.
引用
收藏
页数:5
相关论文
共 24 条
[1]   ABILITY GROUPING EFFECTS ON ACADEMIC-ACHIEVEMENT AND SELF-ESTEEM - WHO PERFORMS IN THE LONG RUN AS EXPECTED [J].
ABADZI, H .
JOURNAL OF EDUCATIONAL RESEARCH, 1985, 79 (01) :36-40
[2]  
[Anonymous], 2001, ALGEBRAIC GRAPH THEO, DOI DOI 10.1007/978-1-4613-0163-9
[3]  
[Anonymous], 2010, GRAPH THEORY COMPLEX
[4]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   Locals vs. global synchronization in networks of non-identical Kuramoto oscillators [J].
Brede, M. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 62 (01) :87-94
[7]   Analysis of a power grid using a Kuramoto-like model [J].
Filatrella, G. ;
Nielsen, A. H. ;
Pedersen, N. F. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 61 (04) :485-491
[8]   Phase Oscillatory Network and Visual Pattern Recognition [J].
Follmann, Rosangela ;
Macau, Elbert E. N. ;
Rosa, Epaminondas, Jr. ;
Piqueira, Jose R. C. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) :1539-1544
[9]  
Freitas C. B. N., 2013, P 22 INT C MECH ENG, P10334
[10]   Paths to synchronization on complex networks [J].
Gomez-Gardenes, Jesus ;
Moreno, Yamir ;
Arenas, Alex .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)