Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption

被引:49
作者
Sato, Hisashi [1 ]
Kasu, Makoto [1 ]
机构
[1] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
关键词
Diamond; Hydrogen-termination; Molecular adsorption; Hole channel; SURFACE CONDUCTIVE LAYER; FIELD-EFFECT TRANSISTORS; FILMS; MECHANISM; GHZ;
D O I
10.1016/j.diamond.2011.12.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigated hole sheet concentration and mobility during NO2 or O-3 adsorption/desorption on H-terminated diamond surface with a hole sheet concentration (p(s)) of similar to 1 x 10(14) cm(-2). During NO2 adsorption, P-s first increased with time and eventually saturated. When the NO2 gas concentration increased in a range of <300 ppm, the saturated value of p(s) increased. However, in the range of >300 ppm, the values were the same, and we therefore determined that the high limit of p(s) is similar to 9 x 10(13) cm(-2) for (001) orientation. Further, we found that during the NO2 adsorption process hole mobility (mu) stays constant, while p(s) is increasing. We propose a NO2 adsorption/desorption and hole-generation model to explain these experimental results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 103
页数:5
相关论文
共 19 条
[1]   Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple [J].
Chakrapani, Vidhya ;
Angus, John C. ;
Anderson, Alfred B. ;
Wolter, Scott D. ;
Stoner, Brian R. ;
Sumanasekera, Gamini U. .
SCIENCE, 2007, 318 (5855) :1424-1430
[2]   Hypothesis on the conductivity mechanism in hydrogen terminated diamond films [J].
Denisenko, A ;
Aleksov, A ;
Pribil, A ;
Gluche, P ;
Ebert, W ;
Kohn, E .
DIAMOND AND RELATED MATERIALS, 2000, 9 (3-6) :1138-1142
[3]   FORMATION MECHANISM OF P-TYPE SURFACE CONDUCTIVE LAYER ON DEPOSITED DIAMOND FILMS [J].
GI, RS ;
MIZUMASA, T ;
AKIBA, Y ;
HIROSE, Y ;
KUROSU, T ;
IIDA, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (10) :5550-5555
[4]   Possibility of realizing a gas sensor using surface conductive layer on diamond films [J].
Gi, RS ;
Ishikawa, T ;
Tanaka, S ;
Kimura, T ;
Akiba, Y ;
Iida, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1997, 36 (4A) :2057-2060
[5]  
Gi RS, 1999, JPN J APPL PHYS 1, V38, P3492
[6]   Diamond surface-channel FET structure with 200 V breakdown voltage [J].
Gluche, P ;
Aleksov, A ;
Vescan, A ;
Ebert, W ;
Kohn, E .
IEEE ELECTRON DEVICE LETTERS, 1997, 18 (11) :547-549
[7]   2W/mm output power density at 1 GHz for diamond FETs [J].
Kasu, M ;
Ueda, K ;
Ye, H ;
Yamauchi, Y ;
Sasaki, S ;
Makitnoto, T .
ELECTRONICS LETTERS, 2005, 41 (22) :1249-1250
[8]   Influence of epitaxy on the surface conduction of diamond film [J].
Kasu, M ;
Kubovic, M ;
Aleksov, A ;
Teofilov, N ;
Taniyasu, Y ;
Sauer, R ;
Kohn, E ;
Makimoto, T ;
Kobayashi, N .
DIAMOND AND RELATED MATERIALS, 2004, 13 (02) :226-232
[9]   Hydrogen-terminated diamond surfaces and interfaces [J].
Kawarada, H .
SURFACE SCIENCE REPORTS, 1996, 26 (07) :205-259
[10]   ENHANCEMENT-MODE METAL-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS USING HOMOEPITAXIAL DIAMONDS [J].
KAWARADA, H ;
AOKI, M ;
ITO, M .
APPLIED PHYSICS LETTERS, 1994, 65 (12) :1563-1565