Solving inverse nodal problem with spectral parameter in boundary conditions

被引:14
作者
Akbarpoor, Sh. [1 ]
Koyunbakan, H. [2 ]
Dabbaghian, A. [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Jouybar Branch, Jouybar, Iran
[2] Firat Univ, Dept Math, Elazig, Turkey
[3] Islamic Azad Univ, Dept Math, Neka Branch, Neka, Iran
关键词
Sturm-Liouville equation; inverse problem; the nodes; Chebyshev wavelet; Chebyshev interpolation; STURM-LIOUVILLE EQUATIONS; INTEGRAL-EQUATIONS; NUMERICAL-SOLUTION; POTENTIAL FUNCTION; RECONSTRUCTION; EIGENVALUES; DERIVATIVES; OPERATOR;
D O I
10.1080/17415977.2019.1597871
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the inverse Sturm-Liouville problem with spectral parameter in boundary conditions on a finite interval is considered. In fact, we use the nodes as input data and compute the approximation of solution of the inverse nodal Sturm-Liouville problem by the first kind Chebyshev polynomials and apply two methods Chebyshev wavelets and Chebyshev interpolation for solving inverse nodal Sturm-Liouville problem. Finally, the results are explained by presenting the numerical example.
引用
收藏
页码:1790 / 1801
页数:12
相关论文
共 34 条
[1]   Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration [J].
Babolian, E. ;
Fattahzadeh, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :1016-1022
[2]   Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions [J].
Browne, PJ ;
Sleeman, BD .
INVERSE PROBLEMS, 1996, 12 (04) :377-381
[3]   The inverse nodal problem for Hill's equation [J].
Cheng, Y. H. ;
Law, C. K. .
INVERSE PROBLEMS, 2006, 22 (03) :891-901
[4]   Remarks on a new inverse nodal problem [J].
Cheng, YH ;
Law, CK ;
Tsay, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 248 (01) :145-155
[5]  
Dehghani Tazehkand I, 2011, ISRN MATH ANAL, DOI [10.5402/2011/754718, DOI 10.5402/2011/754718]
[6]  
FREILING G., 2001, Inverse Sturm-Liouville Problems and Their Applications
[7]   NUMERICAL INVESTIGATION OF THE INVERSE NODAL PROBLEM BY CHEBYSHEV INTERPOLATION METHOD [J].
Gulsen, Tuba ;
Yilmaz, Emrah ;
Akbarpoor, Shahrbanoo .
THERMAL SCIENCE, 2018, 22 :S123-S136
[8]   SOLUTIONS OF INVERSE NODAL PROBLEMS [J].
HALD, OH ;
MCLAUGHLIN, JR .
INVERSE PROBLEMS, 1989, 5 (03) :307-347
[9]   A uniqueness theorem for inverse nodal problem [J].
Koyunbakan, Hikmet ;
Panakhov, Etibar S. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2007, 15 (06) :517-524
[10]   A new inverse problem for the diffusion operator [J].
Koyunbakan, Hikmet .
APPLIED MATHEMATICS LETTERS, 2006, 19 (10) :995-999