Flexible and Transparent Metal Oxide/Metal Grid Hybrid Interfaces for Electrophysiology and Optogenetics

被引:24
作者
Chen, Zhiyuan [1 ]
Yin, Rose T. [1 ]
Obaid, Sofian N. [1 ]
Tian, Jinbi [1 ]
Chen, Sheena W. [1 ]
Miniovich, Alana N. [1 ]
Boyajian, Nicolas [1 ]
Efimov, Igor R. [1 ]
Lu, Luyao [1 ]
机构
[1] George Washington Univ, Dept Biomed Engn, Washington, DC 20052 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2020年 / 5卷 / 08期
基金
美国国家卫生研究院;
关键词
electrophysiology; flexible microelectrodes; indium tin oxide; metal grids; transparent microelectrodes; WALL CARBON NANOTUBES; ELECTRODE ARRAY; GRAPHENE; STIMULATION; FABRICATION; SURFACE;
D O I
10.1002/admt.202000322
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible and transparent microelectrodes and interconnects provide the unique capability for a wide range of emerging biological applications, including simultaneous optical and electrical interrogation of biological systems. For practical biointerfacing, it is important to further improve the optical, electrical, electrochemical, and mechanical properties of the transparent conductive materials. Here, high-performance microelectrodes and interconnects with high optical transmittance (59-81%), superior electrochemical impedance (5.4-18.4 omega cm(2)), and excellent sheet resistance (5.6-14.1 omega sq(-1)), using indium tin oxide (ITO) and metal grid (MG) hybrid structures are demonstrated. Notably, the hybrid structures retain the superior mechanical properties of flexible MG other than brittle ITO with no changes in sheet resistance even after 5000 bending cycles against a small radius at 5 mm. The capabilities of the ITO/MG microelectrodes and interconnects are highlighted by high-fidelity electrical recordings of transgenic mouse hearts during co-localized programmed optogenetic stimulation. In vivo histological analysis reveals that the ITO/MG structures are fully biocompatible. Those results demonstrate the great potential of ITO/MG interfaces for broad fundamental and translational physiological studies.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
  • [2] High-density electrode array for imaging in vitro electrophysiological activity
    Berdondini, L
    van der Wal, PD
    Guenat, O
    de Rooij, NF
    Koudelka-Hep, M
    Seitz, P
    Kaufmann, R
    Metzler, P
    Blanc, N
    Rohr, S
    [J]. BIOSENSORS & BIOELECTRONICS, 2005, 21 (01) : 167 - 174
  • [3] Large-scale recording of neuronal ensembles
    Buzsáki, G
    [J]. NATURE NEUROSCIENCE, 2004, 7 (05) : 446 - 451
  • [4] Transparent electrodes for organic optoelectronic devices: a review
    Cao, Weiran
    Li, Jian
    Chen, Hongzheng
    Xue, Jiangeng
    [J]. JOURNAL OF PHOTONICS FOR ENERGY, 2014, 4
  • [5] Recent advances in organic optoelectronic devices for biomedical applications
    Chen, Zhiyuan
    Obaid, Sofian N.
    Lu, Luyao
    [J]. OPTICAL MATERIALS EXPRESS, 2019, 9 (09): : 3843 - 3856
  • [6] Flexible polyimide microelectrode array for in vivo recordings and current source density analysis
    Cheung, Karen C.
    Renaud, Philippe
    Tanila, Heikki
    Djupsund, Kaj
    [J]. BIOSENSORS & BIOELECTRONICS, 2007, 22 (08) : 1783 - 1790
  • [7] Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films
    Dan, Budhadipta
    Irvin, Glen C.
    Pasquali, Matteo
    [J]. ACS NANO, 2009, 3 (04) : 835 - 843
  • [8] Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique
    Datta, Robi S.
    Syed, Nitu
    Zavabeti, Ali
    Jannat, Azmira
    Mohiuddin, Md
    Rokunuzzaman, Md.
    Zhang, Bao Yue
    Rahman, Md. Ataur
    Atkin, Paul
    Messalea, Kibret A.
    Ghasemian, Mohammad Bagher
    Della Gaspera, Enrico
    Bhattacharyya, Semonti
    Fuhrer, Michael S.
    Russo, Salvy P.
    McConville, Chris F.
    Esrafilzadeh, Dorna
    Kalantar-Zadeh, Kourosh
    Daeneke, Torben
    [J]. NATURE ELECTRONICS, 2020, 3 (01) : 51 - 58
  • [9] Duan XJ, 2012, NAT NANOTECHNOL, V7, P174, DOI [10.1038/NNANO.2011.223, 10.1038/nnano.2011.223]
  • [10] Eick Stefan, 2009, Front Neuroeng, V2, P16, DOI 10.3389/neuro.16.016.2009