The bounds of the eigenvalues for rank-one modification of Hermitian matrix

被引:3
|
作者
Cheng, Guanghui [1 ]
Song, Zhida [2 ]
Yang, Jianfeng [2 ]
Si, Jia [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Microelect & Solid State Elect, Chengdu 611731, Sichuan, Peoples R China
关键词
bounds for eigenvalues; Hermitian matrix; rank-one modification; EIGENPROBLEM;
D O I
10.1002/nla.1867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some new interlacing properties about the bounds of the eigenvalues for rank-one modification of Hermitian matrix, whose eigenvalues are different and spectral decomposition also needs to be known. Numerical examples demonstrate the efficiency of the proposed method and support our theoretical results.Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 50 条
  • [1] The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem
    Cheng, GuangHui
    Luo, XiaoXue
    Li, Liang
    APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1191 - 1196
  • [2] Dynamics of a rank-one perturbation of a Hermitian matrix
    Dubach, Guillaume
    Erdos, Laszlo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [3] New results on Hermitian matrix rank-one decomposition
    Wenbao Ai
    Yongwei Huang
    Shuzhong Zhang
    Mathematical Programming, 2011, 128 : 253 - 283
  • [4] New results on Hermitian matrix rank-one decomposition
    Ai, Wenbao
    Huang, Yongwei
    Zhang, Shuzhong
    MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) : 253 - 283
  • [5] Eigenvalues of parametric rank-one perturbations of matrix pencils
    Gernandt, Hannes
    Trunk, Carsten
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 429 - 457
  • [6] THE GROUP OF EIGENVALUES OF A RANK-ONE TRANSFORMATION
    CHOKSI, JR
    NADKARNI, MG
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (01): : 42 - 54
  • [7] On relative residual bounds for the Eigenvalues of a Hermitian matrix
    Drmac, Z
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 : 155 - 163
  • [8] Rank-One Matrix Pursuit for Matrix Completion
    Wang, Zheng
    Lai, Ming-Jun
    Lu, Zhaosong
    Fan, Wei
    Davulcu, Hasan
    Ye, Jieping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 91 - 99
  • [9] RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM
    BUNCH, JR
    NIELSEN, CP
    SORENSEN, DC
    NUMERISCHE MATHEMATIK, 1978, 31 (01) : 31 - 48
  • [10] Extreme Eigenvalues and the Emerging Outlier in Rank-One Non-Hermitian Deformations of the Gaussian Unitary Ensemble
    Fyodorov, Yan V. V.
    Khoruzhenko, Boris A. A.
    Poplavskyi, Mihail
    ENTROPY, 2023, 25 (01)