Adaptive Hybrid Function Projective Synchronization for Two Different Chaotic System with Uncertain Parameters

被引:0
作者
Xie, Chengrong [1 ]
Xu, Yuhua [1 ,2 ]
机构
[1] Yunyang Teachers Coll, Dept Math, Shiyan 442000, Hubei, Peoples R China
[2] Univ Donghua, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
来源
2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010) | 2010年
基金
高等学校博士学科点专项科研基金;
关键词
Function projective synchronization; Adaptive control; Lyapunov stability; FEEDBACK;
D O I
10.1109/IITSI.2010.120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates general hybrid function projective synchronization using adaptive method, the drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems hybrid function projective synchronized. Numerical simulations are given to show the effectiveness of the proposed adaptive controllers.
引用
收藏
页码:12 / 16
页数:5
相关论文
共 20 条
[1]  
Chen G., 1998, CHAOS ORDER METHODOL, P23
[2]  
Chen G., 2003, DYNAMICS LORENZ SYST, P61
[3]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410
[4]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[5]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[6]   Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :456-464
[7]   Synchronization of chaotic systems via nonlinear control [J].
Huang, LL ;
Feng, RP ;
Wang, M .
PHYSICS LETTERS A, 2004, 320 (04) :271-275
[8]   Generalized projective synchronization between Lorenz system and Chen's system [J].
Li, Guo-Hui .
CHAOS SOLITONS & FRACTALS, 2007, 32 (04) :1454-1458
[9]   A secure communication scheme using projective chaos synchronization [J].
Li, ZG ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :477-481
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO