Unsupervised-Learning-Based Feature-Level Fusion Method for Mura Defect Recognition

被引:41
|
作者
Mei, Shuang [1 ]
Yang, Hua [1 ]
Yin, Zhouping [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
Unsupervised learning; handcrafted feature; feature extraction; feature fusion; defect recognition; NEURAL-NETWORK APPROACH; SET;
D O I
10.1109/TSM.2017.2648856
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mura defect recognition has long been a challenging task in displays, such as the liquid-crystal display (LCD), organic light-emitting diode display and polymer light-emitting diode display. In this paper, we propose an unsupervised-learning-based feature-level fusion approach for mura defect recognition. The approach is known as a joint-feature-representation-based defect recognition framework method. This method concentrates on obtaining effective and sufficient features for mura defects by fusing handcrafted and unsupervised-learned features in a complementary manner. To demonstrate the performance, several experiments are carried out to compare this method with some widely used feature extraction approaches. Experimental results show that the proposed method is more robust and accurate. They also indicate that it is compatible with different unsupervised-learning-based algorithms and handcrafted feature descriptors. Finally, the proposed method is implemented in the vision inspection equipment for recognizing mura defects in thin-film-transistor-LCD panels. It exhibits high robustness and improves the recognition performance by nearly 20% compared with the traditional handcrafted feature descriptors.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [1] Action Recognition Based on Feature-level Fusion
    Cheng, Wanli
    Chen, Enqing
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [2] Finger-vein and fingerprint recognition based on a feature-level fusion method
    Yang, Jinfeng
    Hong, Bofeng
    FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [3] Feature-level Fusion for Depression Recognition Based on fNIRS Data
    Zheng, Shuzhen
    Lei, Chang
    Wang, Tao
    Wu, Chunyun
    Sun, Jieqiong
    Peng, Hong
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2898 - 2905
  • [4] Feature-level Fusion for Depression Recognition Based on fNIRS Data
    Zheng, Shuzhen
    Lei, Chang
    Wang, Tao
    Wu, Chunyun
    Sun, Jieqiong
    Peng, Hong
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2906 - 2913
  • [5] RPROP Algorithm in Feature-Level Fusion Recognition
    Liu Hui-min
    Li Xiang
    Wang Hong-qiang
    Fu Yao-wen
    Shen Rong-jun
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 764 - +
  • [6] Alternative Deep Learning Architectures for Feature-Level Fusion in Human Activity Recognition
    Maitre, Julien
    Bouchard, Kevin
    Gaboury, Sebastien
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (05): : 2076 - 2086
  • [7] Feature-level fusion method based on KFDA for multimodal recognition fusing ear and profile face
    Xu, Xiao-Na
    Mu, Zhi-Chun
    Yuan, Li
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 1306 - 1310
  • [8] Color Component Feature Selection in Feature-Level Fusion Based Color Face Recognition
    Lee, Seung Ho
    Choi, Jae Young
    Plataniotis, Konstantinos N.
    Ro, Yong Man
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [9] Feature-level data fusion for bimodal person recognition
    Chibelushi, CC
    Mason, JSD
    Deravi, F
    SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, VOL 1, 1997, (443): : 399 - 403
  • [10] Alternative Deep Learning Architectures for Feature-Level Fusion in Human Activity Recognition
    Julien Maitre
    Kevin Bouchard
    Sébastien Gaboury
    Mobile Networks and Applications, 2021, 26 : 2076 - 2086