Symmetric tensor fields of bounded deformation

被引:12
作者
Bredies, Kristian [1 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Symmetric tensor fields; Bounded deformation; Sobolev-Korn inequality; Boundary traces; Continuous/compact embeddings;
D O I
10.1007/s10231-011-0248-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study spaces of symmetric tensor fields of bounded deformation for tensors of arbitrary order, i.e., where the symmetrized derivative is still a Radon measure. A Sobolev-Korn type estimate, a boundary trace theorem and continuous as well as compact embedding properties into Lebesgue spaces are obtained, showing that these spaces can be regarded as a natural generalization of the spaces of bounded deformation to higher-order symmetric tensors.
引用
收藏
页码:815 / 851
页数:37
相关论文
共 16 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[2]  
[Anonymous], 1988, CONTACT PROBLEMS ELA
[3]   EXISTENCE OF THE DISPLACEMENTS FIELD FOR AN ELASTOPLASTIC BODY SUBJECT TO HENCKYS LAW AND VONMISES YIELD CONDITION [J].
ANZELLOTTI, G ;
GIAQUINTA, M .
MANUSCRIPTA MATHEMATICA, 1980, 32 (1-2) :101-136
[4]  
Biggs N., 1993, Algebraic graph theory
[5]  
Bredies K., 2011, P 9 INT C SAMPL THEO
[6]   Total Generalized Variation [J].
Bredies, Kristian ;
Kunisch, Karl ;
Pock, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :492-526
[7]   2ND-GRADIENT CONSTITUTIVE THEORY FOR GRANULAR MATERIAL WITH RANDOM PACKING STRUCTURE [J].
CHANG, CS ;
GAO, J .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (16) :2279-2293
[8]  
Dunford N., 1958, PURE APPL MATH, V7
[9]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions
[10]  
Gargiulo G, 2008, J CONVEX ANAL, V15, P191