Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area

被引:56
作者
Zhang, Sizhao [1 ]
Feng, Jian [1 ]
Feng, Junzong [1 ]
Jiang, Yonggang [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Adv Ceram Fibers & Composites Lab, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Chitosan aerogels; Specific surface area; Binary medium; Ethanol; Mechanism; SILICA AEROGELS; CELLULOSE AEROGELS; MICROSPHERES; SEPARATION; CHEMISTRY; HYDROGELS; SILK;
D O I
10.1016/j.cej.2016.10.098
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Acquiring high specific surface area (SSA) is a crucial reason why aerogels possess diverse unusual functionalities both in nanoscale structures and macroscopic properties. Although biomass aerogels can remedy the mechanical brittleness in contrast to conventional silica aerogels, regrettably causing a major decrease in SSA aspect. Here we present a generalizable synthetic means towards a family of chitosan aerogels (CAs) with large internal surface area, originating from chitosan sols in ethanol/water binary medium. The as-prepared CAs show high SSA of 973 m(2) g(-1) , appropriate texture homogeneity and thermal stability, attributing to uniformly inter-associated structures. We found an emergent phenomenon that free-standing wet chitosan gel could be still produced despite greatly lowering its substance concentration, attesting the remarkable role of ethanol for promoting gelatum formation. This enhancement to gelation is due to the introduction of micro-dispersed active phases upon. ethanol/water excitation, easily forming fine interconnected skeletons of CAs. The adsorption tests of CAs for abatement of methyl orange (MO) verify that dye-treated water almost recovers into pure one, well in line with the evidence of high SSA CAs. A convincing explanation for gelling and cross-linking is also analyzed. Our work facilitates to explain the generation mechanism of gels in binary solvents for the creation of CAs with high SSA. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:700 / 707
页数:8
相关论文
共 51 条
[21]  
2-I
[22]  
Kadib A., 2014, J NANOSCI NANOTECHNO, V14, P308
[23]   Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels [J].
Katti, A ;
Shimpi, N ;
Roy, S ;
Lu, HB ;
Fabrizio, EF ;
Dass, A ;
Capadona, LA ;
Leventis, N .
CHEMISTRY OF MATERIALS, 2006, 18 (02) :285-296
[24]   Nanocelluloses: A New Family of Nature-Based Materials [J].
Klemm, Dieter ;
Kramer, Friederike ;
Moritz, Sebastian ;
Lindstrom, Tom ;
Ankerfors, Mikael ;
Gray, Derek ;
Dorris, Annie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (24) :5438-5466
[25]  
Kobayashi Y, 2014, ANGEW CHEM, V126, P10562, DOI DOI 10.1002/ANGE.201405123
[26]   Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization [J].
Li, Lichun ;
Yalcin, Baris ;
Nguyen, Baochau N. ;
Meador, Mary Ann B. ;
Cakmak, Miko .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (11) :2491-2501
[27]   Structure and Properties of Soy Protein/Poly(butylene succinate) Blends with Improved Compatibility [J].
Li, Yi-Dong ;
Zeng, Jian-Bing ;
Wang, Xiu-Li ;
Yang, Ke-Ke ;
Wang, Yu-Zhong .
BIOMACROMOLECULES, 2008, 9 (11) :3157-3164
[28]   Macroscopic-Scale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications [J].
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Chen, Li-Feng ;
Zhu, Zhu ;
Zhang, Wen-Jun ;
Yu, Shu-Hong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (21) :5101-5105
[29]   THERMAL-CONDUCTIVITY OF MONOLITHIC ORGANIC AEROGELS [J].
LU, X ;
ARDUINISCHUSTER, MC ;
KUHN, J ;
NILSSON, O ;
FRICKE, J ;
PEKALA, RW .
SCIENCE, 1992, 255 (5047) :971-972
[30]   Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization [J].
Maleki, H. ;
Duraes, L. ;
Portugal, A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) :1594-1600