Integrative Pathway-Based Approach for Genome-Wide Association Studies: Identification of New Pathways for Rheumatoid Arthritis and Type 1 Diabetes

被引:9
作者
Buechel, Finja [1 ]
Mittag, Florian [1 ]
Wrzodek, Clemens [1 ]
Zell, Andreas [1 ]
Gasser, Thomas [2 ,3 ]
Sharma, Manu [2 ,3 ,4 ]
机构
[1] Univ Tubingen, Ctr Bioinformat Tuebingen ZBIT, Tubingen, Germany
[2] Univ Tubingen, Dept Neurodegenerat Dis, Hertie Inst Clin Brain Res, Tubingen, Germany
[3] German Ctr Neurodegenerat Dis, DZNE, Tubingen, Germany
[4] Univ Tubingen, Inst Clin Epidemiol & Appl Biometry, Tubingen, Germany
关键词
B-CELL RESPONSES; GENE ONTOLOGY; TOOL; PREVALENCE; DISEASES; IGA;
D O I
10.1371/journal.pone.0078577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome-wide association studies (GWAS) led to the identification of numerous novel loci for a number of complex diseases. Pathway-based approaches using genotypic data provide tangible leads which cannot be identified by single marker approaches as implemented in GWAS. The available pathway analysis approaches mainly differ in the employed databases and in the applied statistics for determining the significance of the associated disease markers. So far, pathway-based approaches using GWAS data failed to consider the overlapping of genes among different pathways or the influence of protein-interactions. We performed a multistage integrative pathway (MIP) analysis on three common diseases - Crohn's disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) - incorporating genotypic, pathway, protein-and domain-interaction data to identify novel associations between these diseases and pathways. Additionally, we assessed the sensitivity of our method by studying the influence of the most significant SNPs on the pathway analysis by removing those and comparing the corresponding pathway analysis results. Apart from confirming many previously published associations between pathways and RA, CD and T1D, our MIP approach was able to identify three new associations between disease phenotypes and pathways. This includes a relation between the influenza-A pathway and RA, as well as a relation between T1D and the phagosome and toxoplasmosis pathways. These results provide new leads to understand the molecular underpinnings of these diseases. The developed software herein used is available at http://www.cogsys.cs.uni-tuebingen. de/software/GWASPathwayIdentifier/index.htm.
引用
收藏
页数:9
相关论文
共 39 条
[1]   MECHANISMS OF DISEASE Inflammatory Bowel Disease [J].
Abraham, Clara ;
Cho, Judy H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 361 (21) :2066-2078
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Pathway and network-based analysis of genome-wide association studies in multiple sclerosis [J].
Baranzini, Sergio E. ;
Galwey, Nicholas W. ;
Wang, Joanne ;
Khankhanian, Pouya ;
Lindberg, Raija ;
Pelletier, Daniel ;
Wu, Wen ;
Uitdehaag, Bernard M. J. ;
Kappos, Ludwig ;
Polman, Chris H. ;
Matthews, Paul M. ;
Hauser, Stephen L. ;
Gibson, Rachel A. ;
Oksenberg, Jorge R. ;
Barnes, Michael R. .
HUMAN MOLECULAR GENETICS, 2009, 18 (11) :2078-2090
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[5]   Pathways of Distinction Analysis: A New Technique for Multi-SNP Analysis of GWAS Data [J].
Braun, Rosemary ;
Buetow, Kenneth .
PLOS GENETICS, 2011, 7 (06)
[6]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[7]   Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application [J].
Cantor, Rita M. ;
Lange, Kenneth ;
Sinsheimer, Janet S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (01) :6-22
[8]   Detecting gene-gene interactions that underlie human diseases [J].
Cordell, Heather J. .
NATURE REVIEWS GENETICS, 2009, 10 (06) :392-404
[9]   Gene, Region and Pathway Level Analyses in Whole-Genome Studies [J].
De la Cruz, Omar ;
Wen, Xiaoquan ;
Ke, Baoguan ;
Song, Minsun ;
Nicolae, Dan L. .
GENETIC EPIDEMIOLOGY, 2010, 34 (03) :222-231
[10]   Pathway Analysis of GWAS Provides New Insights into Genetic Susceptibility to 3 Inflammatory Diseases [J].
Eleftherohorinou, Hariklia ;
Wright, Victoria ;
Hoggart, Clive ;
Hartikainen, Anna-Liisa ;
Jarvelin, Marjo-Riitta ;
Balding, David ;
Coin, Lachlan ;
Levin, Michael .
PLOS ONE, 2009, 4 (11)