HIGHER ORDER SELF-ADJOINT OPERATORS WITH POLYNOMIAL COEFFICIENTS

被引:0
作者
Azad, Hassan [1 ]
Laradji, Abdallah [1 ]
Mustafa, Muhammad Tahir [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Qatar Univ, Dept Math Stat & Phys, Doha 2713, Qatar
关键词
Self-adjoint operators; polynomial coefficients; KOEKOEKS DIFFERENTIAL-EQUATION; GENERALIZED JACOBI-POLYNOMIALS; ORTHOGONAL POLYNOMIALS; LAGUERRE-POLYNOMIALS; EIGENFUNCTIONS; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study algebraic and analytic aspects of self-adjoint operators of order four or higher with polynomial coefficients. As a consequence, a systematic way of constructing such operators is given. The procedure is applied to obtain many examples up to order 8; similar examples can be constructed for all even order operators. In particular, a complete classification of all order 4 operators is given.
引用
收藏
页数:21
相关论文
共 27 条
[1]   Polynomial solutions of certain differential equations arising in physics [J].
Azad, H. ;
Laradji, A. ;
Mustafa, M. T. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (12) :1615-1624
[2]   Polynomial solutions of differential equations [J].
Azad, H. ;
Laradji, A. ;
Mustafa, M. T. .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[3]   A DIRECT APPROACH TO KOEKOEKS DIFFERENTIAL-EQUATION FOR GENERALIZED LAGUERRE-POLYNOMIALS [J].
BAVINCK, H .
ACTA MATHEMATICA HUNGARICA, 1995, 66 (03) :247-253
[4]   Differential operators having Sobolev type Laguerre polynomials as eigenfunctions [J].
Bavinck, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) :3561-3567
[5]   A note on the Koekoeks' differential equation for generalized Jacobi polynomials [J].
Bavinck, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) :87-92
[6]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[7]  
Brenke WC., 1930, B AM MATH SOC, V36, P77, DOI [DOI 10.1090/S0002-9904-1930-04888-0, 10.1090/s0002-9904-1930- 04888-0]
[8]  
Everitt W.N., 1957, Quart. J. Math. Oxford, V8, P146
[9]   Orthogonal polynomial solutions of linear ordinary differential equations [J].
Everitt, WN ;
Kwon, KH ;
Littlejohn, LL ;
Wellman, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :85-109
[10]  
Ince E. L., 1956, ORDINARY DIFFERENTIA