DIAGONAL RECURRENCE RELATIONS FOR THE STIRLING NUMBERS OF THE FIRST KIND

被引:0
作者
Qi, Feng [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan Province, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Stirling number of the first kind; diagonal recurrence relation; integral representation; Bell polynomial of the second kind; Faa di Bruno's formula; Lah number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper presents diagonal recurrence relations for the Stirling numbers of the first kind and recovers three explicit formulas for special values of the Bell polynomials of the second kind.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 15 条
[11]   Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind [J].
Qi, Feng .
FILOMAT, 2014, 28 (02) :319-327
[12]   Complete Monotonicity of a Difference Between the Exponential and Trigamma Functions and Properties Related to a Modified Bessel Function [J].
Qi, Feng ;
Berg, Christian .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) :1685-1696
[13]   Integral representations and properties of Stirling numbers of the first kind [J].
Qi, Feng .
JOURNAL OF NUMBER THEORY, 2013, 133 (07) :2307-2319
[14]  
ZHANG XJ, 2012, INT J OPEN PROBL COM, V5, P122, DOI DOI 10.12816/0006128
[15]  
Zhang Z. -Z., 2012, Tamsui Oxf. J. Inf. Math. Sci., V28, P39