DIAGONAL RECURRENCE RELATIONS FOR THE STIRLING NUMBERS OF THE FIRST KIND

被引:0
作者
Qi, Feng [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan Province, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Stirling number of the first kind; diagonal recurrence relation; integral representation; Bell polynomial of the second kind; Faa di Bruno's formula; Lah number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper presents diagonal recurrence relations for the Stirling numbers of the first kind and recovers three explicit formulas for special values of the Bell polynomials of the second kind.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 15 条
[1]  
Comtet L., 1974, ADV COMBINATORICS AR
[2]  
Daboul S., 2013, Math. Mag., V86, P39, DOI DOI 10.4169/MATH.MAG.86.1.039
[3]  
Guo B. - N., 2015, TECHNICAL REPORT
[4]  
Guo B. -N., 2015, J. Anal. Number Theory, V3, P27
[5]  
GUO BN, 2015, ONLINE J ANAL COMB, V10
[6]  
Lindsay J, 2011, J COMB, V2, P245
[7]   Bell polynomials and k-generalized Dyck paths [J].
Mansour, Toufik ;
Sun, Yidong .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (12) :2279-2292
[8]  
Mansour T, 2008, AUSTRALAS J COMB, V42, P285
[9]  
Qi F., 2013, RECURRENCE FORMULA 1
[10]   Derivatives of tangent function and tangent numbers [J].
Qi, Feng .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :844-858