EXISTENCE OF SOLUTIONS FOR A CLASS OF P-LAPLACIAN TYPE EQUATION WITH CRITICAL GROWTH AND POTENTIAL VANISHING AT INFINITY

被引:16
作者
Deng, Yinbin [1 ]
Li, Yi [2 ]
Shuai, Wei [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
[2] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
关键词
p-Laplacain type equations; weighted Sobolev space; critical growth; vanishing potential; variational method; NONLINEAR SCHRODINGER-EQUATIONS; SELF-SIMILAR SOLUTIONS; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.3934/dcds.2016.36.683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solution for the following p-Laplacain type equations with critical nonlinearity {-Delta(p)u + V(x)vertical bar u vertical bar(p-2)u = K(x)f(u) + P(x)vertical bar u vertical bar p*(-2)u, x is an element of R-N, u is an element of D-1,D-p(R-N), where Delta(p)u = div(vertical bar del u vertical bar(p-2)del(u)), 1 < p < N, p* = Np/N-p, V(x), K(x) are positive continuous functions which vanish at infinity, f is a function with a subcritical growth, and P(x) is a bounded, nonnegative continuous function. By working in the weighted Sobolev spaces, and using variational method, we prove that the given problem has at least one positive solution.
引用
收藏
页码:683 / 699
页数:17
相关论文
共 26 条
[1]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[2]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[3]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]  
[Anonymous], RIV MAT IBEROAMERICA
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   Groundstates for the nonlinear Schrodinger equation with potential vanishing at infinity [J].
Bonheure, Denis ;
Van Schaftingen, Jean .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) :273-301
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]  
Catrina F, 2007, P ROY SOC EDINB A, V137, P1157