Spatial and Temporal Day-Ahead Total Daily Solar Irradiation Forecasting: Ensemble Forecasting Based on the Empirical Biasing

被引:9
|
作者
Baek, Min-Kyu [1 ]
Lee, Duehee [1 ]
机构
[1] Konkuk Univ, Elect Engn, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
ensemble forecasting; gradient boosting algorithm; total daily solar irradiation; input data classification; kriging; RADIATION; MODEL; CLASSIFICATION; VALIDATION;
D O I
10.3390/en11010070
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Total daily solar irradiation for the next day is forecasted through an ensemble of multiple machine learning algorithms using forecasted weather scenarios from numerical weather prediction (NWP) models. The weather scenarios were predicted at grid points whose longitudes and latitudes are integers, but the total daily solar irradiation was measured at non-integer grid points. Therefore, six interpolation functions are used to interpolate weather scenarios at non-integer grid points, and their performances are compared. Furthermore, when the total daily solar irradiation for the next day is forecasted, many data trimming techniques, such as outlier detection, input data clustering, input data pre-processing, and output data post-processing techniques, are developed and compared. Finally, various combinations of these ensemble techniques, different NWP scenarios, and machine learning algorithms are compared. The best model is to combine multiple forecasting machines through weighted averaging and to use all NWP scenarios.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Comprehensive physics testing and adaptive weather research and forecasting physics for day-ahead solar forecasting
    Huva, Robert
    Song, Guiting
    Zhong, Xiaohui
    Zhao, Yangyang
    METEOROLOGICAL APPLICATIONS, 2021, 28 (04)
  • [22] Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting
    Lopez Santos, Miguel
    Garcia-Santiago, Xela
    Echevarria Camarero, Fernando
    Blazquez Gil, Gonzalo
    Carrasco Ortega, Pablo
    ENERGIES, 2022, 15 (14)
  • [23] Day-Ahead Wind Power Temporal Distribution Forecasting With High Resolution
    Hosseini, Seyyed Ahmad
    Toubeau, Jean-Francois
    Amjady, Nima
    Vallee, Francois
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 3033 - 3044
  • [24] Pandemic-Aware Day-Ahead Demand Forecasting Using Ensemble Learning
    Arjomandi-Nezhad, Ali
    Ahmadi, Amirhossein
    Taheri, Saman
    Fotuhi-Firuzabad, Mahmud
    Moeini-Aghtaie, Moein
    Lehtonen, Matti
    IEEE ACCESS, 2022, 10 : 7098 - 7106
  • [25] Forecasting Day-ahead Solar Radiation Using Machine Learning Approach
    Hassan, M. Z.
    Ali, K. M. E.
    Ali, A. B. M. Shawkat
    Kumar, Jashnil
    2017 4TH ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWCONCSE 2017), 2017, : 252 - 258
  • [26] Robust day-ahead solar forecasting with endogenous data and sliding windows
    Kamarianakis, Yiannis
    Pantazis, Yannis
    Kalligiannaki, Evangelia
    Katsaounis, Theodoros D.
    Kotsovos, Konstantinos
    Gereige, Issam
    Abdullah, Marwan
    Jamal, Aqil
    Tzavaras, Athanasios
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (02)
  • [27] Wind power forecasting using ensemble learning for day-ahead energy trading
    Suarez-Cetrulo, Andres L.
    Burnham-King, Lauren
    Haughton, David
    Carbajo, Ricardo Simon
    RENEWABLE ENERGY, 2022, 191 : 685 - 698
  • [28] Economics of physics-based solar forecasting in power system day-ahead scheduling
    Wang, Wenting
    Guo, Yufeng
    Yang, Dazhi
    Zhang, Zili
    Kleissl, Jan
    van der Meer, Dennis
    Yang, Guoming
    Hong, Tao
    Liu, Bai
    Huang, Nantian
    Mayer, Martin Janos
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 199
  • [29] A Comparative Analysis of Tree-Based Models for Day-Ahead Solar Irradiance Forecasting
    Moon, Jihoon
    Shin, Zian
    Rho, Seungmin
    Hwang, Eenjun
    2021 INTERNATIONAL CONFERENCE ON PLATFORM TECHNOLOGY AND SERVICE (PLATCON), 2021, : 13 - 18
  • [30] A Hybrid Tree-Based Ensemble Learning Model for Day-Ahead Peak Load Forecasting
    Moon, Jihoon
    Park, Sungwoo
    Hwang, Eenjun
    Rho, Seungmin
    2022 15TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2022,