Separation of oil/water emulsion using nano-particle (TiO2/Al2O3) modified PVDF ultrafiltration membranes and evaluation of fouling mechanism

被引:20
作者
Yi, X. S. [1 ,2 ]
Yu, S. L. [1 ]
Shi, W. X. [2 ]
Wang, S. [2 ]
Jin, L. M. [2 ]
Sun, N. [2 ]
Ma, C. [2 ]
Sun, L. P. [3 ]
机构
[1] Tongji Univ, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
[2] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150006, Peoples R China
[3] Tianjin Inst Urban Construct, Tianjin Key Lab Aquat Sci & Technol, Tianjin, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
fouling mechanism; TiO2/Al2O3; nano-particles; oil/water emulsion; PVDF ultrafiltration membranes; CROSS-FLOW ULTRAFILTRATION; IN-WATER EMULSION; MICROFILTRATION;
D O I
10.2166/wst.2012.565
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present study, nano-sized TiO2/Al2O3 modified polyvinylidene fluoride (PVDF) membranes (MM) were fabricated and then utilized for oil/water emulsion separation. The results showed that, compared with PVDF membrane (OM), the contact angle of MM decreased and hydrophilicity increased. The ultrafiltration (UF) of oil in water emulsions with transmembrane pressure (TMP) increasing results in a sharp fall in relative flux with time. The cake filtration models did not always predict the performance over the complete range of filtration times very well. In the initial 30 min, all the four cake models can simulate this UF process to a certain extent, and the suitability was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However, they were no longer adapted well with UF time extent to 60 min, but only cake filtration (R-2 = 0.9535) maintained a high adaptability. Surface and cross-sectional morphology of the membrane was investigated by SEM to make an advanced certificate of this UF mechanism.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 22 条
[1]   Development of a new high porosity ceramic membrane for the treatment of bilge water [J].
Benito, J. M. ;
Sanchez, M. J. ;
Pena, P. ;
Rodriguez, M. A. .
DESALINATION, 2007, 214 (1-3) :91-101
[2]   Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters [J].
Benito, JM ;
Ríos, G ;
Ortea, E ;
Fernández, E ;
Cambiella, A ;
Pazos, C ;
Coca, J .
DESALINATION, 2002, 147 (1-3) :5-10
[3]  
Bevis A., 1992, Filtration and Separation, V29, P295
[4]   Dynamic optimization of a dead-end filtration trajectory: Blocking filtration laws [J].
Blankert, Bastiaan ;
Betlem, Ben H. L. ;
Roffel, Brian .
JOURNAL OF MEMBRANE SCIENCE, 2006, 285 (1-2) :90-95
[5]   Cross-flow ultrafiltration of stable oil-in-water emulsion using polysulfone membranes [J].
Chakrabarty, B. ;
Ghoshal, A. K. ;
Purkait, M. K. .
CHEMICAL ENGINEERING JOURNAL, 2010, 165 (02) :447-456
[6]   Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane [J].
Chakrabarty, B. ;
Ghoshal, A. K. ;
Purkait, M. K. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 325 (01) :427-437
[7]   Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes [J].
Chen, Wenjuan ;
Peng, Jinming ;
Su, Yanlei ;
Zheng, Lili ;
Wang, Lijun ;
Jiang, Zhongyi .
SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 66 (03) :591-597
[8]   Surface modification of ceramic-supported polyethersulfone membranes by interfacial polymerization for reduced membrane fouling [J].
Chu, LY ;
Wang, S ;
Chen, WM .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2005, 206 (19) :1934-1940
[9]   Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water [J].
Cui, Jiaoying ;
Zhang, Xiongfu ;
Liu, Haiou ;
Liu, Shuqin ;
Yeung, King Lun .
JOURNAL OF MEMBRANE SCIENCE, 2008, 325 (01) :420-426
[10]   Diffusion studies in polarized reverse osmosis processes by holographic interferometry [J].
Fernandez-Sempere, J. ;
Ruiz-Bevia, F. ;
Salcedo-Diaz, R. ;
Garcia-Algado, P. .
OPTICS AND LASERS IN ENGINEERING, 2008, 46 (12) :877-887